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X, On the Integration of certain differential Expressions, with
which Problems in physical Astronomy are connected, &c. By
Robert Woodhouse, 4. M. F. R. S. Fellow of Caius College.

Read April 12, 1804.

Iv analytical investigation, two important objects present them-
selves: the concise and unambiguous expression of the condi-
tions of a problem in algebraic language; and the reduction of
- such expression into forms commodious for arithmetical com-
putation. - '

If the introduction of the new calculi, as they have been
called, has extended the bounds of science, it has enormously
increased its difficulties, in their number and magnitude. The

differential forms that can be completely integrated, occur in few

problems only, and those of small moment. In physical astro-
nomy, the investigations give rise to differential expressions,
which call forth all the resources of the analytic art, even for
their approximate integration. ,

For the integration of differential expressions that, by the
process of taking the differential, can be derived from no fimte
algebraic form, recourse is had to infinite series: thus, if the
expression be dx . fz, and there is no quantity Fx, such that
dx.fx=4d (Fz): frisput =f((x —a) +a) =f (z —a)
+of(z—a).a 4+ f(xr—a)a 4 &c. and fdx . fr=

Jdzx . f (x — a) +/fdz . of (z — a) + fdz . f (z —a) &c. or, |
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220 My, WooDHOUSE on the Integration

putting fx = f (a 4 x — a), theintegral of dx . fx is calculated
from the series fdx .fa . (x — a) + fdz . pfa. (z — a)* + &c.

But, although the integrals of many expressions can thus be .
exhibited, yet such series are useless for the purpose of arith-
metical computation, exeept their terms continually decrease,
and except the limits of the ratio of the decrease of the terms
can be determined; and the invention of series adapted to
arithmetical computation, has not been the least of the difficulties
encountered by modern analyéts.

Although the differential expressions that admit no finite inte-
gration have not been reduced into classes, yet there are some,
from their sifnplicity, and frequent occurrence in analytical in-
vestigation, more conspicuously known and attentively consi-

' . dz dx
dered : such are the expressions ——, % 70

tation of their integrals, in other words, is the determination of
the logarithms of numbers, and the lengths of circular arcs.

The necessity of calculating the integrals of expressions such

as T 4= —, must soon have obtruded itself on the attention
S e’ V(=)

d
of the early analysts: for several expressions, as —

T and the compu-

v dx

—x?? x\/l_—x’"

dz dx

142*? 2 2% —

= &c apparently dissimilar, are easily reduced

d dr
to,the forms T vie

grating a variety of forms, is soon reduced to that of the integra~

; and besides, the difficulty of inte-

tion of : such, for instance, are the forms &

1+.z’ vVi=z* 4/ (1 7') 4
i’f ot and all that are comprehended under o +sz Wt
the forms Vf:jz’)’ v(x: dx,), &c. and all that are comprehended
under %%

V(=2
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It is on the grounds of convenience of calculation, and of
systematic arrangement, that differential expressions, such as
have been just exhibited, are resolved into a series of terms

Pdx + P do + Pdx 4 &c. 4 Q d;{::;_———"—;, where Pdx 4 P'dz,

P"dx are integrable; for, remove those grounds, and it will be
?fm+ X 'I-m+ 3 tzm—!- 5

1
2m+1 + z2m+43 7+ zm45 °

_ difficult to assign a reason why *

3—'—-3——[- &c. is not an mtegral of 7(—1——3”—,—) equally exact as
. - (zm—1) - 1.(zm—1) (2m—3)
—\/(l_x ){ + (zm-—z) am %t + (2m—4) (zm—z) .2m"

1.3.5 .00 2m—1 dx

e + &C}+ 2.4.6....2m V(1—a*)"*

In the application of the differential calculus to curve lines,
after making certain arbitrary assumptions, it appears that hy-
perbolic areas, and arcs of circles, may be computed from the

integrals of the expressions ';’—:— j(xl =
are in fact afforded by the several mecthods that relate to the
quadratures of the circle and hyperbola; and mathematicians,
either for the sake of embodying In some degree their specula-

tions, or from a notion of a necessary cormexion subsisting be-
dx
e V(=)
expressed the integrals by the arcs and areas of those figures.
Although the computation of the integrals, is totally inde-
pendent of the existence of the figures, and of their properties,
yet it is curious, that the simplest transcendental expressions
of analysis, should express parts of the simplest figures in

geometry.

the integrals of which

tween circles, hyperbolas, and the integrals of & have

1
¥ This series arises from expanding v = and from integrating each term mul-

tiplied into &7, dx.
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dx dx
’ 42 1/ (3=
scendental expression, next, in point of simplicity, is

In analytical investigation, after =5 the tran-

dz 4/ ( Ll ) ;* in a particular application, this differential re-
Ppresents the arc of an ellipse,} a figure, next, in point of sim-
plicity, to the circle.

Many differential expressions depending, for their integration,

on the integral of dx \/ (-1-'1'__—;), itbecame necessary to exhibit
it, for all values of zand e. A problem in consequence arose, of

no small difficulty, named, analogously to the naming of

dx : .
~ ==, the rectification of the ellipse. In the prosecution of

_the researches to which this problem led, it was discovered that
the hyperbola might be rectified by means of the ellipse, or, to
speak correctly, and without the employment of figurative
language, it was discovered that the transcendental expression

dx J (f—i—"’—l—) (¢ 7 1) might be made to depcnd for its inte-~

x°

gration, on that of dx J -‘—?I—e—-‘-}) ev 1.

The integration of de\/ (i_—;-’:_j:) does not depend more on

the length of an ellipse, than it does, on the time of the vibration
of a pendulum in a circular arc, or on the attraction of a sphe-
roid ; but, in each of these problems, it occurs as an analytical
‘phrase, an expression in symbolical language, the exact meaning
of which it is necessary to know. If the meaning be determined
for one case, it is for all three ; and hence, with the rectification of

dx

1/(1—x ) (1=
the following pages,

1s as simple an expression: they are considered together in

+ The ellipse admits of an easy mechanical description; and, constdered asa sectxon
of the cone, was admitted by the ancient geometricians into plane geometry
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the ellipse, a problem by itself unimportant, the solutions of other
problems, are intimately connected; and, with this object in view,
the determination of the length of a curve line, mathematicians

~ have enriched analysis with several curious artifices, and va-
luable methods.

To determine the integrals of —=—= =, dr J (-1%5:-{-) it is
necessary to expand them into serles The difficulty is, to expand
them into series that converge: the determination of the integral

of ——= 1/"'(1 ought to precede that of dx J ( 1= ) indeed, in

most of the series that represent the latter, «[7(7:-7’—) is involved
as a term, and is supposed to be known. The determination
of each integral presents a curious circumstance, in the cor-
respondence of certain geometrical properties and analytical
artifices ; for instance, the theorem for the tangent of the sum
of two circular arcs, affords, analytically, a means of computing
the length of the arc; a'nd conversely, the analytical artifice* by

which the integral of - is computed; translated, leads tothe

* The method of deducing the value of f Va = between the values of x, o and

1, independently of any reference to a circle, is as follows

Let dz. _ dd + du" then/ fdu du"
vi—zt Vi Vi— V{(1—a%) V(1 v (1—u"%)

+C, and, expressing the integrals by their exponential expressions, we may deduce

(see Phil. Trans. 1802z) # v/ (1—") 4 '/ (1—4'*) = 2, Let x =1 and u’ =u
d’ dx
v (

1 2
= .. —= consequentl =
v R A s R Cr)
between the values of #, 0 and —=, equals the integral of ——f——-;— between the
v v (1—2%)

, or twice the integral of

.
2
2

l d ¥
values of x, o and 1. Again, put V(l o :: j:’l_v,) + Vz)i-'v") .

*, as before,

1 1. 1
vy (1—1" V(1 =) =u; put 4= — ¥ = ——= = ——, consequent]
\Y ( ) + 1/( ) H Y Van ) v 5 ’\/IO, q Y

dx
v (!—-x‘) v (l /(1—v")
MDCCCIV. G g

(contained between the values of ', o and ) 4
10
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properties of the sines, and tangents, of circular arcs. Again,
FaeNaNI’s theorem, by which a right line is assigned equal to
the difference of two elliptic arcs, affords a method of arith-
metically computing the length of the ellipse; and, conversely,

 the analytical artifice by which the integral of dz J "‘Ie__i )
is computed; translated into geometrical language, becomes

FaGNANI's theorem. And again, the analytical resolution of
Jdx J( ) into Au’ 4 Bu" 4 P/du’ J (-I-:?:_-g-f) +
Q/du” J (-’—'—'f”—“—) (where the integrals, on account of the

> dv
v (1—
from the smallness of v, v/, converge with considerable rapidity ; or the latter part

4

z y z+z
V(x+z2)”"‘~/(x+z")’ = VG then

dz dz
1422 +j1 +22°
Now, if u' = l__, P |
’ Vo2 Y

. 1 . .
o) (contained between the values of v, o and —=, which latter series,
v ) -

thus, putv = =y, and

y
T

Consequently, the integral o

oand 1) -—f e

!between the values of 2, o and {) + f o (between the values of 2, o and §),

and consequently, poa) (between o and 1) = z{ ” 23 4 — = 25 - &c. }

\/ (
4 2{ 1 3—?’? + — T 35 — &c. } w'mch is, in fact; EvLEer’s method of detcrmining
the periphery of a circle. Now, from this analytical artifice of putting the integral of
dx _[dv "du’
V(1—2*) TS (1—u?) +« W (1—u")’ »
computed, may be deduced those theorems which relate to the sines, and tangents, of
the sum and difference of arcs, &c. by translating the formula #'y/ (1—2"*)-+
'/ (1—*) = z into geometrical language, ’

by which means its arithmetical value is
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e

smallness of ¢/, ¢”, are readily computed,) translated into the
language of geometry, expresses a curious relation between the
arcs of three elhpses, the excentricities of which vary according
to a certain law.

Hence it appears, that there are two different methods by
which the analytic art may be advanced; either by artifices
peculiarly its own, or by aid drawn from the properties of figures
and curve lines; if, for instance, FacNaANI’s theorem be proved
for an ellipse, by processes purely geometrical, then, such a
theorem, expressed in analytical language, becomes immediately

a means of computing the integral of dx J =225 or if, by
reasonings strictly geometrical, a relation can be established be-
tween the arcs of three ellipses, whose excentricities vary ac-

cording to a certain law, then, by expressing such a relation in

the signs of algebra, the mtegral of dx J ( et ) may be

1.

computed by means of the integrals of du’ J (—‘—'—lf—::—Z) and of

du"J (1____;_":_;;) ; which integrals can be found more readily
than the original integral, by reason of the quicker convergency
of the series into which the differential expressions may be
expanded, ¢’ and ¢ being less than e.

One main object of the present paper is, to exhibit the integral
of dzx J ( ) for all values of ¢, and to reduce other
integrals to 1t. Much has been already done on this subject.
The researches of mathematicians on the length and comparison
of elliptic arcs, are extended over the surface of many memoirs;
yet I hope to have something to add in point of invention, and
more in point of arrangement and simplicity of expression.
The labours of future students will surely be lessened, if it be

Gge
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shown, that several methods, apparently. distinct and dissimilar,
because expressed in different language, are fundamentally, and
in principle, the same,

The simplest mode, and the first that occurred to mathema-
ticians, of finding the value of fdz J (-—-—-————) was, to expand the
differential expression into a series of terms ascending by the
powers of ¢, and to take the integral of each term. This method,
however, is very imperfect ; for, if ¢ be nearly = 1, the series
converges so slowly as to be unfit, or at least very incommodious,
for arithmetical computation. It became necessary then to
possess a series ascending by the powers of 1 — ¢*; and such a
series was first given by EvLEr, in his Opuscula, published at
Berlin in 1%50; and it must be manifest, that there can be no
one single series, ascending by the powers of e, or by powers
of the same function e, that can in all cases represent its value.
I purpose to consider the several series that represent the value
of jde / (555), |
when e is small,
when ¢ is nearly = 1, or, when /(1—¢") is small,
when ¢ is £ ¢/ (1—¢") and 2 =,

V 2
wheneis > /(1—e) and > — Vz
when ¢ and 4/ (1—e¢*) are equal, or when each equals 7’-_5_-
The series for the first and second cases, I shall deduce, because
I wish to consider the subject in its fullest extent; but those se-
ries,when we regard pracﬁcal commodiousness, are superseded by

the methods by which the fdx J ( 1._1e:i:) is to be found, in

the third and fourth cases. Two methods then, are only requisite
for finding the integral in all the values of ¢; for the integral
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in the last case may be found, with nearly equal convenience, by
either of the methods in the two preceding cases.

For the sake of conciseness, I employ the symbol b to denote
the numeral coefficients of the terms arising from the expansion
of (1 — x)”; thus, p1”signifiesm; p*1”,m.m —1; D17
m.(m—1)(m—2).m—nt1)

m.m—1 w Mo (me=1) (mf-z). "
i Dl 1.2. 3 DlSlgmheSx.z. 3 ... N
and consequently, in particular values of m and #, D 11 signifies

1.1.3 D* 11 signifies — :;_36__5_ D’ 1—= signifies — :.i.é;

2.4.6° .87
4z ‘3:5.7,
D1 51gmﬁes rawswnt &ec.
Employing, therefore, this notation in the expansion of
. 1— ¢* z° ___7 dr
J(l—ex)wehavedxj x" == e {12—-1)1 ez
+ D 1iet ' =D 1’ *+ &c.}, and the (724 1)th term is

Zn
y Lo XT.dx
e Ta=ay

xzn—-z dx 2n .27'” dx

Now, d (a/ (1—2°)) == (en—1) -2 — 20 hence,
¥ dr __ 1 an—1 s 27§ 22— dp
T = — — T (1—2) + — il

vV (1—2%)
2711

x‘”"' ‘/(l—x‘) - 2N . 202 x’”"‘/(l._x’)

-
B e Y

2n
. (zn—3) x2% dy

(2n—1) ! .
+ 2n . (2n—2) "J 4 (1—2%)°
consequently, continuing the reduction,
22 dx — . ) (zn—-l) 2n-.3
_._-—-‘/(1-—-.7:){ + 2n . (2n=2) * +&C}

Y (1—=2%) an
(zn—1) . (2n—3) &C. . .. v . 5.3.1 dx
T 20 0 2H—2 iei0e.aa0.4.2, V(l—x’)(gb)

Hence, putting for n the several values o, 1, 2, g, &c. we have
f dx J = =0
— D1z e’{

2 gL af =23 «/(l—x’) 3x1/(x—-x”) 1.8
+1‘?lze{ 4 _— 4.2 +z.4q’}

-—M/(l——x’) }
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2y (1=2?) 52 (1—2") s 3oy (1mat) 4 108050
6. 4 T 6.4.2 2.4.6

--D1 e{"

+ &c. \ ‘
Hence, if the integral of dx J ( =2 ), between the values of

1-'
x, o and 1, be required, putting = = & ““29 =value of ¢, or of
dx
V=27’

jde l—-e"x:) (fro-mlx=o tox=i)
\’_—{I—Dlz I4rate 4 D31 ¢° + &e. }( )

- or, developmg the symbohcal coefﬁments D1%, D* 11, &c.

T 1.l 1.1 1.3 , 1.1.3 1.3.5 6 }
11 z.2¢ 7. 4" 2. 46 ~ 274.6'2.4.68 &e.
whlch series has been given by several authors, Simpson, EULER,

Animadversiones in Rect. Ellips. p 129, &c.

when x = 1, we have

If, instead of the coefficients L i, we use -— Dl“"’", D 1-z,
&c. the integral
—— 1 —% e 2 gl Ty g ot 3 L 3 el 6
_._2{1-]-1)11.1)1 ce4D 13, D175 - D1 D 1T &
where the (n--1)th term is D" 15. D’ 1~%, which, (since
' Y -—l_____ 7 gL . 7 4 I\a o .
D" 17 = — D" 15. (2n—1)), equals — (D" 13) . (2n—1); con-
sequently, the integral may be put
z I\a" 52 2 q1\2 4 3 (I\3 s ___
2{1-——-(D12).€-—-(Ig) h).ge——(D 13)°. 5e &c.}
From this series, fdx J {l——]f_:i—) may be computed when ¢

is small; but it is evidently of very little use when e is either
nearly = 1, or is of mean value. To speak in geometrical
language, the length of an ellipse of small excentricity may be

computed by the above series.

. dr . —dv
If v be put = 1 — 227, V(—a?) 24/ (1—v%)’

and de ( ‘—18-7—’;: ) = z_\/dfl—v“) ‘ ~/ (2-_‘;2) v (1 + '5::%7),
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put—z—g;- = ¢, and dx J (—I-'Z;i:?x;-) = df,

2 dv 1 1 o gl 2o
then df = -2‘-~/ 22- ﬁm{ 1 4+D1z.cv 4Dt v &c. }
Now (by methods similar to those that have been given)

L \/(1—-7)“){“ e 5 + & }+

1. 3...‘2n-—i

1/(1—""1') 2n . (2n—2
pinter d‘l/ . . 2 NPT R )
Vi ! an f\/ Vi—v ){ 2n41 + (2n+1) (2n—1) °
1.2.4. .
+ &C + v 3.5 zn+l }

Hence, putting ¢' = f "'/d(wl_vz)

—\¢'+pifey/ (1—v*) 41 1%09{ v‘/("‘”) }
—1/ =
J=3: ' 2 -|-D 3. c{ —\/(1—v=)+ }+&C
which series agrees exactly with LEGENDRE’s, given in Mem. de
I’ Acad. p. 620, when the quantities v, ¥ 1—2*, &c. are expressed

in geometrical language.
In order to find the integral from r=o0 to x==1, put =0,
“then v =1, put £ = ——, and then v =o0; but it has appeared

v
- dx
that the fv ) (between the values of .z, o and 1) = 7=

(between the values of z, o and -—-2-) == consequently, f =)
(between the va]ues of », 1 and o).

Hence, f = J =2 ={ 1+D°lz -—+D“ %-—-—-f; ‘*-}_—&c.}(e)

— e\ o LI S 1.1.3.5 1.3 4
Or""'“/(l—z)2{1_2.4.’2'6«_2.4.6.8'2.40—&0'}

which is the series given by LEGENDRE, and by EuLer, Novi
Comm. Petrop. Tom. XVIIL p. 71, and called by that author
Series maxume convergens ; yet the series is by no means prac-
tically commodious when e is nearly 1. <

A very useful series, when e is small was given by Mr. Ivory,
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in the Edinburgh Transactions, Vol. IV. which I shall notice in
the sequel; not now, because I consider it as a particular case
of the general method by which, in all cases, the integral

of dx J ) may be computed.

In order to deduce the series by which, when e is nearly =1,
f may be computed, put 1 — ¢* = {7,

then df:dr\/ 1+('—e_ )__de(1+ ): (if r=

bn 2 __d 2 o2 —_ bzz; dz
(14223 (1+ z) {V ‘/(1+b z)} V42 y (146 2%
b* z* dz b" "dz I 11000 s g =1 pe .
Now, T IR S v oae ’){1 i4p1—ibz 411 b* 2" 4 &ec. 1
2t dz
—_— T {3z an-[-: o
and the (n-1)th term =" 1 : pprbe, TR

252, dy ____z"-""" V{142 41 22 dx
Vit+2*) T 2n42 Ttz JV(1+z z)’
(2n41) (2n—1) 22— dz

2 V(1) anda 2n—1 .
A — o % 1/(1+2 )+ (zn42) 2n

and, consequently,

Now,

2n42 2n+z Vgt
o . 2t 2n41) (2n—1) 2N
‘/(1+2 ){ 2n42 2n4-2 . 2n + (2n42) zn.(zn-—z)'z 3+&C. }
fzn41) (zn—1) . ... 3.1 dz ng1 ___% dz
i(zn—{-z) 2 . e 4.2 '_[x-{-zz (]c) 1 ‘ -\/(1+z"))'
Hence,f—‘ii-——;- V(14 b =) '
) (1422 .
ol e 2
--{D1f-%b=+n1"'§‘lc)’1"%.b‘+13‘1“%1€)“1 W'4p1—ip 4.,1”%.b8+&c.}
x log. (24 (142*)

. z4/(142%)

-—Dl—“b41/(1+z){————-?—;-—;-}
_]3'1-zb° (142 { —— +S6 o &c.}
— &cC.

. oy 1427
- or, since v/ (14-2*) = VT
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T V (14 @)
2y 4b*2?)
- v(1+2%)
- o L s 1=z 2 —':I_]-:- — .
—-{Dl b4 p1— *D'1 b‘+D D1 }{ l. z+1/(1+z)
V(l+z)}
zz
Vl-[-z" {
—L1b 22
— D1 1/(rb+z){ 4 —4-2}
R L 6 P zG 2 z!
—D ‘V(i+ L 6 —'6.4+6.4.'2}
—.—&C. ‘

Now, from this series, as it stands, the whole integral of

1—e® & 2
dx J ( ) cannot be computed, because being == T
when =1, % is infinite : therefore, we must use an artifice similar
to that by which f i =y has been computed ; Wthh artifice con-

sists in ﬁndmg v a functlon of x, such that v (between z
1—x*

=—o0 and z = a,

——; shall = whole integral of

*’“ ’){fmmx*“of:—l} 2V (1=2%) vy (1=1?)
— b4 - —1}2
Let therefore x—*\/ ( i ) in which case, V= w - Y(i—e)?

1—g* x’ . dv (1—e?)
—— S—— 3 3

consequently, dx J Vo] (1= o]

1—e® 2? 1—e*v*\__ . (1—=20% €% p*)
and dx J ( )+va ( _vz)_..e dv R T
m/(l-—v’)
= Xd{ V(re—e* v?)
Hence, . :
—_— ) - J— 2 2 . 2 . ‘/ — 1,)
Jiz f (S=28)) () st f (A=) ==t o (C)
when x = 1, v = 0. Let the whole integral of dz ( "'le_z_;”: ),

from‘x=otox= 1, be denoted by f (1) .*. C=f(1),
MDCCCIV. Hh
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and f+ fdv f (25558 ) = (1) 4 Lz

Now, f:—”—:-//%fé—);;)— = o, both when v is 0 and when v is 1; conse-
quently, there is an intermediate value of v, with which fif—‘%—:—_ Z’)v’)

is a maximum. Such value of v, investigated appears to be
1/(1+¢(1 = also x ; consequently, of ....-f(l) + 1-—1/ (1—e)
. Now from thls property of the integral of dx J _l—x" ), may

the whole integral be computed ; for, since r =
consequently, f (1) = of — 1 + b
=1-4b (for, putting -—————, zJ ( I+b ).__. 1)

I

‘ —L 71 -—% P 1) 24— 3—%6 "
'-—Q{Dl b+ D172 D 17T b D TR DT A &l

{l 1+\/(‘+b) (xl.yb)}

2 b
EREVITIN ) Iy ,
I : C
ep1~ = b* b : ,
VTR { 4 '_4~z} S : (3)
21—
2]6‘) 1 { b3 b4 +[)5 }
V(a+blL 6 T 6.4 6.4.2 )’

— &c.
~ This form is, in fact, the same as what is given by LEGENDRE,
Mem. del’ Acad. 1786 ; and, if the integral had been taken by a me-
thod a little different from the above, a series exactly coinciding
with LEcenNDRE’s would have resulted. Thus,

. — ‘/(]+b1z1)_’. dz % % 2 ot - % 4 4
smcedf__dz R = TaoE { 1341k b 2D 18b +&c.}

® 1 have, in a succeeding page, deduced this theorem of Facnan1 from the general

1—e* 2*

method, contained in the following pages, for computing fdx\/

1—x*
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P

) 22 dy
(1;2%%

the (n-}-1)th term =1 13. T

=D" 1% b, (271—- 1
¢
A X

(nw)

Iz

— D13 b xd \— ) Now, if the integrals of

D" 15 b (en— be taken and added together, for the se=-

1)
x/(1+
veral values of z, (smnlarly to Wha.t has been already done,) there
results,
-—*fm% b+D° 1z, D1™%, b*+D1:. D 173, b°+6cc.}
[ Laty (14%) — e )
+D”12b4 -—'_'l':z—)-( z2 )
s 24 5.2"
+D 13 b 1/(1+z2){ _ 4.2 }
.. & 5.3.2"
+D11b !+zz){ I Sz +6.4.12}
+ &ec.
consequently, putting z == ;’-—_Z:, we have f (1) =¢f — 1 + b

o o L —3 1t L yd 4L —3 6 1+ 145
‘=2(D1%b‘+9 17. 017304 D° 1. D 1—E b &l o L T

the series p1%b*4D* 13. D17 * b* &c. numerically expressed is
o __ 4 + 3 3 516 i
b-{-z42.+246 b+&c

. ® This series is the same as

X I 1 X L
-3 he — 5 -3 K4 2 — 3 g3 & }
--{m b D17 D 1 TEH 4D 172 DT TE b o &
Hh 2
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Let.y = Z(1+\/(1+x)) then, dy"‘zv 14+2) (144/(14%))
dx dzx
2z Zx\/(l-l-l‘)

o dx f S £y 1.3 }
1
2

je—
=

2x 2z

4

X 1.3 x* 1.3.% 23 & : :

e . . - XC, COIT.
J 4 2.4 4 + 4.6 6 -+:

when r =o y =12 =.-. corr.
hence, ] 1Y (142 .
3

Y )

1
+12+l,1/b
2 3.6 3.5 b? 3.5.7 b
=l\/b_1+4—24'4+24.6'6—&c
1f this series be substituted for Z""‘/‘/(;er) :/(1 At intheabove

form for £ (1), ifm

be expanded, and the terms affected with

like powers of b, be collected, we shall have the same series as
LecenDRE has given. EuLer, however, is the original author of
the series; and has expressed its law much more clearly than the
French mathematician. In the Eurer1t Opuscula, Berlin, 17350,

p. 165, the author says, that the elliptic quadrant
=1+ Ab* 4 Bb*+ Cb° 4 &ec.

—{ab 4 bt 4 b + &e. } log. b, in which

g._.llogszA-—z , a_...—;—l
= A= (@) +5. | f=—T
C=-= ; B—1{8—y)+%.T|r="%8
D=3 C—i(y—0) + 1. +|8=3F>
E= g.xoD*?((y“—E)-l"s"*;“ e =450
&c. - &ec.
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LEGENDRE's series is easily reducible to this, since log. 72772

Llog. +=log. 2 — % log. b.

This memoir of EvLer (Animadversiones in Reclificationem
Ellipseos) is curious, on account of the strange artifices used to
obtain the series for the length of the eccentric ellipse. It is cha-
racteristical of the peculiar mathematical powers of EvuLER, and
also bears strong marks of the rapidity and eagerness with which
he conducted every work of calculation. The author discovers the
series and its law, partly by tentative methods, and partly by the
use of a differential equation of the second order; and indeed,
without the use of such an equation, it is difficult to exhibit the
law. Let f(1) represent the whole integral of f, from x =o to
xr = 1, then,

(1—=0%) . d* f(1) 1+b df(1)
i — A4 f(1) =o.

Assumethen, f(1)=1 4 Ab“ -+ Bb" + Cb° 4 &ec.
+{ ab* 4 Bb* 4 ob° 4 &c.}log. b;
deduce the values of {;zi , d’:};) ; compare the terms affected with
like powers of b; and the law of the series, such as it has been ex-
hibited, may be deduced.
The following is the method of deducing the differential equation ;

df=dx “ZI_’:::)L ‘ﬁ _.‘/(('I':b;):); and, taking the partial

differentials,
A f b .
dz.db — 1/(1-[—1)" zz) (|-|-z“)% ?
- df 1 ba*f
consequentl —
q ¥>~az V(142 )(1+z‘3 +dz db’
) df b b.d3f
dnd dz-db_,‘/(x_l_b?v z")%‘ (I+z2)7_ +d~ nsz'
b? 2 _braiy

v 6

(140 )% (1422)% T dz . db?
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r 1452 X . & f
(1467 22)% (1427)% (140 2% (14293 de.db®
or Y b« &S
: dz dz . db (1+b* 23 142 dz . db*
Now, the differential of - ey 2
\/(l+’ J(1+6*2) T (l+72)z (140* 2%
L (=1 dz 2dz
Cbr (42 (14072 ’)~ {V(l+ ’)(1+[) z*) }+ % 1+z’ Vigo 2
. = dz = _ 2df
° f b* '(I+zz)%(l+bzzz)%_\/(l+z)(1+b2 2) _*-b2 ] bz + b.db
,f__ _ b 2 -l 2b [!f____b"d"f
* db b*—1 \/(x-l-z) (‘x+b" 2 b”—x = VN db T dbr

. L0 d .
f__._‘_z_’_ f+(1+62 db’_O; since, when £ = 1,

I

= 00, and 1+z)(1+b2~2) ==—— =0,

In order to compute the integral fde ( 1 ) (f), when e
is nearly = 1, by a series ascending by the powers of /(1—e),it
has been found necessary to establish this formula,

. 1—e* 2% | O V{1—a?

iz J (=55 4 o (S = () + SR

Now, this formula, an analytical artifice useful for computation,
applied to a particular curve, and translated into geometrical lan~
guage, exhibits a curious property of the curve ; thus, in an ellipse

whose semiaxes are 1, /(1 —¢), fde ( 1= ),fd v/ [ 1o )
-represent arcs (E, E’) correspondmg to absc1ssas, z, v; and f (1)
is the elliptic quadrant (E (1)) ; hence
E+E=EQ)+c¢z./ (%)
E—{E()—E}=er) (555)
or the difference of two arcs, one reckoned from the extremity of
the conjugate, the other from the extremity of the transverse, is

equal to a right line, represented by ¢* z J (f—l:%;z—,)
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This theorem is known by the name of Fasnanr’s theorem.*

When £ = v, or the quantity ¢* x J —-————-) is at its maxxmum,
Qf'—"f(l)"l"l"“b’ .

orf — (f{1) =f)=1~b,

OTE-—{E(I)-—E'} =1—0b;
or the elliptic quadrant is divided in such a manner, that the dif-
ference of the two arcs = difference of the semiaxes.

From the preceding analysis it is clear, ti:at the computation of

the integral of dx J (

istence of the ellipse and its properties. But it also appears, that
 the property of the bisection of the ellipse, established geometri-
cally, ought not to be regarded as a merely curious and beautiful
property, since, by its aid, the length of the elliptic quadrant may
be computed. Several other properties, consilered hitherto in the
light of curious and speculative truths, translated, would appear

analytical artifices, and in computation practically useful.
1 —e® 2®
( 1—g?

) is perfectly independen: of the ex-

By the preceding series, the integral of dx J ) may be
computed, when ¢ is nearly =oor1 Itis necessary, however,
to possess a method of computing the integral when e is of mean
value; and the methods I am about to exhibit, are such as to
supersede the use of the two series ascending by the powers of e
and & ; in other words, from two similar methods, in all values of

¢ between o and 1, the integral may be commodiously computed.
The principle of the method is this, if df = dx J (—I:l-e:—z:), then,

¢ This theorem of Fagnan1 has lately been very neatly demonstr.ated, by a most
skilful mathematician, Mr. BRiNkLEY, in the Irish Transactions, by a geometrical pro-
cess, “but not without the use of prime and ultimate ratios. Indeed, the nature of the
subject is such, that the theorem cannot be established, without the use of the fluxionary
calculus, or of some calculus equivalent to it.
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af', df", df", &c. being similar differential expressions, df may be
resolved into mdP -« . df 4 8. df", (dP being a perfect differen-
tial, m, «, 8, &c. constant coeflicients,) in like manner,

df may be resolved into m'dP'4-o' . df"+£' . df"",

df” into - = wm"dP'44 . df" 8. df,

&ec. '
and, consequently, df may be resolved into

m.dP+am' . dP'+ oo’ m' m" dP" + &.
+adaa" &c. df' & 4 &c.

This resolution depends on a very simple, and, if I may use the

term, natural substitution, in the form dx J —‘:-e-—m—-) of which,

to the best of my knowledge; M. LAGRANGE is the author.

Let y -—xJ —xez } ;

then, x2=—_-1i’——- /(4 (=) ey,

V(1=x?) (Tmme® x*) T 1—2x%4 e y* V(1+2 . (e*—z) yi 4 et yt) ”

Now, if p =1 +¢/(1—¢*), p=2— e*42/(1—¢),
if g=1—/(1—¢"), ¢'= 2— e*—2/(1—¢),
and 14-2. (¢*—2) 3¢ y*=(1—p* 3*) . (1—¢* ¥*)
. dx .___ dy . aw ' .
T (1) (e %) T V(I—P‘L.’Y%) (1—g* 3% ——1’ . 1/(1 n) (l __ /z) ?

putting y:::z-, and putting -}q- =¢,

ds . P . ' )
o= IS transformed into ST =T
9 1=y(1=e)
P V(=

similarly, putting p'=1+4/(1—¢"), ¢"=
"_. v f [1=u2
and u"=p'u J (m)a

dw’ N : 1 du”

V(1=u?) (1—e* uw?) T = PV —d) (1= u?)
. — ) R
Hence, since ¢'= 1‘4/_(“/ z = P =1+ V(1=—e)= .._......
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‘/d(.’:__xz)“__e?. —7 may be transformed into
e (14e) (14¢) A

2 (1—u?) (1= u?)? or ———" W (1—u") (1—e" u"*) 3

(14¢) (14" (142" ... 14 dut
2 2 .. 2 2 t [T u?) (1 et 2]

And, 51m11arly, putting U’~J (1—u") (1—e"u",)
U=/ (1—u") (1—e" u") &c.

, may be transformed into

or into

(A+Bz*) . dx
V{1—x*) (1—e* 5%

2A+ B\ dw B Be*  whdw
() v et s
or, to render the last term like the original form, into
2A+B Be* A"\ dw B Be* ' s
(= — zpﬂ%’) N — 't e (A B /) o
“And, into a form exactly similar may (A'+B'%") . v“_u,z)[l_ ey
be transformed.
: L X% L dx (1ee? x?)
Hence, to transform df or dx J ) = i = 7)
A=1,B=—¢; consequently,

df =% du'— =] + (1—eur) . 2

Ul ;’
or, since Vv (1—e )-—- +e, and _— :+e,_
j -4 du' o -
df=f-(1+e)a'u —_ 23 . J -+ §+e’ Ldf's “(»a)
similarly, df' == ——. (14-¢"") du'' — ( "‘“;'» ) ‘g‘: + :-]-e” L df"s |

dfu___.: T (1+e'm) du'' — &c.
The utility of this transformation will appear, by observing that

the quantities ¢/, ¢”, ¢, &c. continually decrease; thus,
1—‘/(1-—-92) e e —e. e

Iy (1= (y(i—e)F T Ty (i—e )

Hence, if e be a frdction, ¢'==e x a fraction; consequently,

¢ is 2 e; similarly, e e'is 2 ¢, e" L e &e; hence, if the series for

P

Jdz J 1 ) does not converge quickly, transform df as above,

MDCCCIV. 11
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and the series for -2 df’, converge more quickly ; but, if not with

UI b
su ﬂ‘iment rapldlty, again transform cﬁ and the resultmg forms
U,, , df", may be converted into series of still greater convergency;
so that, by this method, we may proceed with certainty to the

computation of fdx J ( —f:ff_i—::-;-) If we stop at the first transfor-

mation, there results a series for f, the same as is given in a
very able memoir of Mr. Ivory's, inserted in the Edinburgh
Transactions, Vol. IV. p. 178.
(1—¢') du’ 1
Thus, a’f__.-— (1) du' — ——. U, -I- 1+e - df, (a)
1+e "d
or (1+o') du’ ) (A) — I+e (B) . —=
Now, u’.__px J ( — z),whlch quantity is at its maximum when

1
V{I+0)
comes 1, #' from o passes through its maximum (1) to o again;

T = , and then #/'==1; consequently, whilst z from o be-

du’ du’
consequently, /:-[—]lf— from z==0 to z==1, =2 [~ from w'=0 to
uw=1.

u'? du '
Now fA —/B.
‘/A(Xdu - { 1'__2___])1_.4}. elz u/g_’_Dzl_% e w — &C. }
—_ B:/‘( - 4 {1 f—p17Feu" 4 D1 et ut— &, }
But by a prccadmg form, page 227,
Ldi — /. gy (W PY/E SR Tl S|
[1/(1 w? T —v/(1—u ){ 2n + 2n (2n—2) . &e. J +
(20 1) (20=3) v §. 3 du’ .
210 . (2H—2) e 4. 2 1=’

put #'==1, and all the terms vanish, except the last; consequently,
from #'==o0 to #'==1,

w ool g, WA I oy (2H=1)(2H=—3) 5. 3.1 K
-f:':]c) 1 z\e '\/(l-u') ](5‘) ‘ ;Z A Ry (21—2) . 6. 4.2" 2
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(—’2’— -_—Q-lf—:-sfi) — 1-163"1—% % + ]c)”r"%. e’ﬂ”.-z— = ..,whether z be

even or odd, (D” 1—%)2 e =

similarly, [+ " 175 v i = ki L

Hence, putting for z the several values o, 1, 2, g, 4, &c. the sum

of the integrals from #'=o0 to u'=1
=-—é"— 1—% 4 (D1—") e (D’l"%)z e + &c. }
+-]-3-"—- p1~i4D1™— % *1 ‘“e”-[—D* —3 D 172 ¢ &c

or, putting for A and B, their values I::;,),» - 2(8 » the integral
. . |
1-% e ‘ (Dl—f‘)z I e
~X —7 242
)t e -+ 2p1 .Ig 17 + &e.

~+ (D1~ ) (D1~ )

and, generally, the coefficient affected with ¢ is ;
X I .

P 2 1 —f-z n4™7% 7 g ™22 e - ng=—3z |*
(=1 epTamhop T (T = (T T

but — (en—1) D' 1i=1D"17%
¢

-

[3

i

and on . 16)" 13 = IG)”"'

. # o — 7Y -1 # g -t
S D 1= 1TE 4D

.
H

Hence, the coefficient affected with ¢ is (]3" 1z)"; and, conse-

_ quently, the integral from ' =otou'=1r

= {1 (P e (D 1) e (D 1) e o
the double of this is the integral ( f) fromz=otor=1,
or/de (—’:I—e:-’f—) fromz=otozx=1
__-;—7(51—:;;-)-{ 1+ (D12)% e" (D" 13)" " (D" 12)" €°- &, }
or, developing the symbols p1z &ec.

lie
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-4

the integral
— 2 I LA A LI
_—2(!+e{ +22 ¢ M+z’4 6 66+&c} (4)
Which is the same series as is glven in the Edinburgh Transac-
tions, Vol. IV. p. 148, and which its ingenious author, Mr. Ivory,
derived from a method of LAGRANGE, contained in the Berlin
. . ; 1—e*a*\ .

Acts for 1784. Accmjdmg to that method, dz J (""TZ’F) is put
under the form Ad@{ 1 - a*+ 2a cos. 24 }%, and its exponential
expression substituted for cos. 24. '

I have deduced the preceding series ascendmg by the powers
of ¢/ or of Z, in order to show, that it is a particular result of the

lee®™ X

general method of the transformation of dx J (""'1'_'2"") For pur-
poses of computation, it will be convenient to push the transfor-
mation farther; if, for instance, to quantities involving e”, the
. ' L-—e® 2% , .
integral of dx\/ ( — ) from z=o0 to r==1, may be com-
puted from 2 series; or the whole integral equals

ﬁu-zr)—m{ 1%+ (Dl%)z. e”’-]— (]0)z 1'711)" 8”4—]— &c. }

27 (1_.:’) (14¢") { 1_%+ (D1~%)2 e”’—}-(D" 1_%)1 e//4+ &C}
which expression may be derived after a manner precisely similar
to that by which I have deduced the series ascending by the powers

of e'.
If the transformation of df be indefinitely continued, there

results a form very convenient for the computation of the mtegral_
of dr J (-’-—’-‘;f-—’i-) in all values of ¢ between o and /%; thus,

1—e  dw af’
df——-,:;;- dW'——- .5+ =57 (@)
1+e dw af
Lo T

} d ull tzf/’ )

similarly, df' = ——-. du "-I-{ I+e o T e
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Hence,
LA N DA ¥
f 1}e u + (14-€) (14¢") du
14+¢  du 14¢” 1§ dun"
+ 2 U + 2 " i4e T U
du’ 1 du” X [0
miwo U, + l+e’ Rz }+ I+e') (l+e” (g/
elll
1
1+e du+ 1+e)(1+e”) - du + (14¢) (14€") (1+e”')
14¢  dw 14¢" X du" 14-e” du"”
+ 2~ U + z ‘14¢° U + 2 (14€) 14’ T U +&C
du 1 du’ 1 du" 3

U + i4+¢° U + (1+¢) (I—{«e”) © e + &C-—}

! n
+ (14¢) (14¢") o &a,? ‘.iﬂ )

du' REE R - 14e") (1-fe”).  du”
Now, Uz O ==( 2 . 2 g

au'"' 4 &ec.

1) (14€") rorrens d .
o )Z,,‘I"H L oo (140} . (& v V, representing the last terms
of series, ¢, ¢”, e, &c; 'y u”, u", &c; U, U”, U", &c.),
s e & (14¢) (14€") o (1F2)
3

(14¢) (14e) worbe ™ 4.4.4- &
and,cy(ﬂ)_—:;!;.._f_g_ﬂ; let P==(1-4¢) (1+e”) e, (1) 3
then, _— )
1+ J(14e") 1 ee (1) (1 fe") (14"

df=—- (14¢). du+ d du +4 o

+ &c (dzu') .

P 2 2* ’ 2* dv
+-27{1 + (14¢)2 + (l+e’)"(l+e")" +iﬁ + &C‘}' v

P 2. 2? " (14¢€) 2 dv
,._-z;{o + 14¢ + (120 (1+¢€) +7 p* + &ec. }+2"P v
consequently,

df =dzu’ + -}z:,;- L
P [ o2 2% ¢’ &
T L(iter + (1€ (1€ + &e. } Y

‘ & dv
+ 5y
e 2%’ et ¢
and, consequently, since —— ==

(1+e) =2 Tker(+er  z.z
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————

\/(1—-62) 2. 47
Tioy/[1— )e"“(l-!-e’)‘)’

(fore bemg =

g% dv
+‘P‘ v
Now, F==-20 80t (14 o) (14e”) (14e”) o (1) 5

1

consequently, since ¢/, ¢”, ¢, &c. continually decrease, the quantity

o dv d dv
-1-)-‘_/:-‘7-_ may be YEJeCted, and v == V(I_VZ) (1 —e* vzj?

nearly = ; consequeritly,

dv
VI=V7] , '
]( __(1+el)ul e’[‘+€)(1+3) thl+&c' (5)
e*. ¢. ¢ »
+7"[1 1—V*  2n {— 2.2.2 +&C.}L/:/(I—V").
- When & passes from o to 1, u' passes from o to 1, (its maxi-

mum,) and from 1 to o; similarly, when #’ passes from o to 1,
u'" passes from oto 1, (its maximum,) and from 1 to o. Hence,

/1/(1 pe generated fromz = oto r = 1 = [ e from wW=o0
o 7 " s dv
tou_._l,....%.[‘/ ——, from %" =0 to u'"=1;= 7=

from y=10 to v = 1; consequentl since w, ', u", &c.=o,
2

when x = 1, the whole integral of dx J ( -—I-:i—Jf-) from =0 to

X
X =

= (putting Q=% 4 5 4 520 f &) P2 —PeQ L
=P (1—eQ) = (6)
Which is the same form as was first given by Mr. WaALLACE,
in the Edinburgh Transactions, Vol. V. p. 28o.
The form (5) may easily be made to agree with that given, by
the last mentioned author, for the length of an elliptic arc.
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Thus, #' = — \/(“‘" ) U= = r\/ 1—u"
hus, » yet Sathe ihe ¥ 1—e? u?| &e.

If we call, then, x the sine of an arc 6,

0 — 2 sin. 8. cos. § — sin. 20

T4 (1=t sing ) T (i4€) y/(1—e* (31 cos. 26))
e Lol e z¢ sin, 28 st . a1
= (since - =7 +e,),) WErorera et similarly, calling #" the

sin. 4%
(1-+e™+2€". cos. 48)

expressed in geometrlcal 1anguage,

f==< (1+e') sin. 26/ =2 (H'e”"””) sin. 44" + &c.
~+ P. cp-—Pesz, (where <p 1s the limit to which the arcs in the

series ¢, §", 6", &c. approach ) and, consequently, since v ==2"¢,

dv ,

Mr. WaLLACE obtained his formula, following a method given by
Mr. Ivory, in the fourth Volume of the Edinburgh Transactions ;
and both these ingenious authors have employed, probably without
adopting, the substitution of LAGRANGE, and the principle of his
transformation, such as that great mathematician uses in finding

sine of 20, w" will equal T>andso on; consequently,

P.dx
the integral of T eI .
Smcee——(lh/“ ,),,e (x+1/(-—"_7)-&c°

When e is a small fraction, the quantities ¢’, ", e, &c decrease
‘very rapidly ; ‘and, consequently, the preceding form is very com-

modious for the computation of fdx \/ (
fraction between o and / L. It ceases, however, to be commedious
when ¢ is nearly = 1, or is not equally commodious w1th the series
1 + Ab 4 Bb*4 &c. :

{ab"-{-ﬁb‘-}- &ec. \log b, given page 234.. I purpose, therefore,
now to exhibit a form by which the integral of dx\/ ( 1o )
may be conveniently computed, when e is any fraction between
4/ Land 1,

1—e* x*

) when e is any
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c[f_ﬂd:c\/( e X ) Letx....‘/( 7y then, df = ===~ doy/ (1B v

Ay (14023
2,2 v* dv
=d 71 ‘/(H‘b )| - A e

b* 22— 2 o2 2 2
Let%——v\/(%;;;),vthenvﬂ _ 2% zl+x/(l+l> ) (149 z)

since (14 p*2") (14 ¢* 2*)=1+42. (2=0*) 2*+ b* 2*, when
p=14+4(1—0") and ¢ =1 — J(l-——b‘)

Hence, since —2%— — o—

V(14v*) (140% 97 \/(1+P z%) (144¢* &%)
. X g a=/(i=F)
= TRz (PUting 2= o b= = Ty )
we have :

b v* dv by Bt o
Vi{14v*) (140> v*) —  p. 2 { 2p* 2 2 Z }
B 2

» \ b* dz'
=Z. (14) d'— = (14%) G + 55 7
- . o B Y 1427) 1=/ (1—%%)
Similarly, putting z"'="% RO Vb= THV(i—5%)

‘/ ( 1+z"’) (1+“bn z/ls) — Z/I

‘b =% dy \ “b* =¥ d2¥
Z, — (1 +\\b) dzl, —— — (1 +\ b) le 1 +\\b ° Zu b}
&c. &c.

&ec.

.o 14 dx 14N 14 de
Consequently, since - == ———. -7 = ————— .57

+ b* v*
d.f‘-_—d(v\/(l I+'U")
\ b* +%b o b* 1’+ *b "
—'{ (1+b)dz +5 'Ir+b + F (40 (0 z +&c}

o~ (1+\b) l+b 1+ b 1487
f—— e z
“ + b 148 ~
s +%) . = . ..., dt
+< \‘\sz(l-l“b) ( ) \b) I+Z >‘\/(1+C2) (I_l_Bzcz)
+ x (1+“ .....
4. (140) (1470) 2
L+ &C : » Dt
- [¢
(140) (1+ ) e (1-+8) 7 /(14%) (H—ﬁn{z)’

B, ¢, being the last terms of the series b, “0,"b, &c. 2/, 2", 2", &¢.
continued toz terms; put the product (14-'0) (1-4"0) ....(14B)=
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b, bbb =0 then. since -4
and — 4 —— 4 2 4 &c. ="Q; then, since TP TE D)

d
nearly 17‘:-(-;-_%;—'—-“ A v (+))—3% v(r+€‘)’

and ﬁ”: 200 D aeeens B.(140D) (14%0) ... (148) )
P™72.2.2 . 2 o 2 . 2

we have ’ ' ,

. 14-5% v2. )
f_ v\/( 1472 ) : (7)
b a4b o b2b. (14D) (14B) _,y g 0% SB (14'D) (141D) (14D) _,,

“{z. z+z.z .2z . 2 z+z.z.z. 2 . 2z 2 %

-+ &c} ’

ERR LI : &0 Jhulog {4 v (140);

b b2 e B.(140) (148) ... (148) o

« 2.2 z . 2z Z

v (1+7),or s (“‘/(’” e fnay be neglected, on account of
its smallness.
Suppose it were requu‘ed to find, from this form, the whole in-

since the last term, to wit,

tegral of dx \/(3—}—:7) from z=0 to x =1, put v = —, then

— 2 149\ 2 — e o 4D 1
= 14 T)\/( 1+bz “} TTo(14%) L b T (S]nceb (14" b)") ‘b
similarly, "= v —p 2= 7171 &ec. '

Consequently, since
A 100
f"‘“‘ 'IJ\/( 140* ) ,
ERAVIRINY (1+ DY (L4B) oy b b (1) (VD) GT4YD) e
2 l— 2 . 2z + 2.2 . 2 . 2 2 %

|

2

+ &ec. :
EREEA-Sy) (§+\/(1+§ )) (L denoting the NaPEREAN loga-

- I
rithm,) when v = ;—5-,
f::: 1 .
b [b.14+% 1 b'b (1+‘b (1+“b) 1
- ( Paklvarile ol ; 75 1+ & }
b.'PQ_ x+¢(x+6)
+ - 2t ! l'( VB )
MDCCCIV. Kk
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=1

b by b () (14
— (g Gt 4 &c.
b

P Q . (1+«/(1+B))’
but it has been shown that, f(1) denoting the integral of
dx\/( e )whenx_lf(1)_2f(x__v‘(l+b))—1+b;

consequently,

f(1)=1b + b (14°0) (14°D) (8)
e ' 1 1+
—b (z 2 + 2.2 . 2 . 2 + &C }
Zb \P Q L (1+1/(I+B).
N b N b
Since b“‘(ﬁ’?/?x‘”b’)“)’*" b= Ve 5O

the terms ‘b, *b,“b, &c. decrease very rapidly ; and b bemg a small
fraction, ‘b is nearly -——%r— b more nearly = { *b more nearly =

\\?.

—, &c. Suppose, then, in the series ‘b *b,%b, &c B, that B\, B By»

&c are the terms precedmg G, B__ o B._. , &c. consequently,
L+V(48) 4 4

l( 7z )_._l 1.1l 1.0 =29.l VB =, simi-

larly, 2”. . R/_E: == g’, l V 7 &c. Hence, supposmg (b the term in

. the series ‘b, “b, b, &c.* after whlch without sensible error, each

term = 1 of the square of the preceding term, we have
f(1)=1 :
( ) s ( 140 + b (14D) (l+ b) + &C } (9)

2 2.2 . 2

+\—2,;-.\P QL)

3 1+ v/ (14B) 2 B 1.3 ﬁ;‘ ’ 2 B
* Or thus, 2 =1 ob e e L L& = e
rES VB vE Ty 2-44* VBT
very nearly °, instead of L (1+‘/I+ },wemay put 2. —J-g 4 — or 21.-5‘-9?+¥£;,
4 8
or 221, -1-/?“- fi‘;—-, or 23 175: —-6-41‘—-, or 2" l-(,-)-l;,very nﬁarly.
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or =1
‘ b.14% ‘b (14°8) (145
—b'{ = +,“fz"“+&c} (9)
\P Q L5 ("')b’
in which, the last term, ‘P Q.1 (m)b ——, 18, in particular values of m,
ZP.Q. L or Z. ‘P Q. 1.t or 2"P 'Q . oy &

each successive value being nearer the truth.

Letb=y/7 .. /(1=b") or e==y/%; hence, the two formulas
for the integral of dz / ('—_—;5:-_—3:4) being equal, and the terms of
the series b, ‘b, b, b, &c. being respectively equal the terms of
the series ¢, ¢, ¢, ¢, &c we have P=P, Q=0, and

— — b\{ b.14'% + ‘b (1+‘b) (1+

2.2. 2

4
. (m)b'
The two forms (5) (7) are fully adequate to the computation of the

mtegral of dx/ ( ) in all values of e; the series (5), in-

volving e, e e, e, &c is to be used, when ¢ is any value between
‘o and ¢/Z; and the series (7), involving & .°b, b, b, &c. is to be
used, when e is any value between /% and 1, or, what is the
same thing, when b is any value between o and v/ Z.

From the preceding forms may be deduced a very curious and
remarkable theorem for the circumference of a circle, which I
shall now exhibit.. '

By former substltutlon, u = - +e x / (i:i;;-—,) 5

and ..., when x= u'=1.

V(x+b)’ L
Hencef jfx Hasam (8= 3<n+b>)i= =)o (=1,
“and '+‘ j (w'=13.

Kk 2

V(x z)(x et
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Consequently,
dx dx

V(l—x)( = (e=1)=2 | o= (I_ 1/(1+b))
,  {1+€) (I+e") ..... =

but V(l—x’)(l—e #) 7T 2. 2 . 2 V(l—vz) _
=(1+4¢") (14€") 14 . -:-, when z=1.

dx - _ fdv ‘

—2%) (1=—e® x*) T J 4/ (14v?) (1467 v%)°?

1+b 14+ ... 1+B g .
and \/ l+'v)(l+b" z) 2 2 l. (C+‘/1+Z )’

and, when v =

Agam,

utting £ = =———e—
p & - Vi

73-, that is, when ¢ = ——- 1/(1+b)

j‘tlv 14514 ... 1+B A 14+ 4/(145)
V(v (14067 v*) T 2., PR ( VB )

dv - fdx
Hence,smcej;/(l_l_v,)(H_bzvz (v=‘/b ) = [Tn=A =T

) dx
V(14-b) V(l—x)(l—e"

we have 2 . {(“l’b (I‘l‘zb ok ]+B}l (1+11//([;+ﬁ])

= (14¢) (14¢") ... (14e). —
Let now e=y/ %L .. b=v/3 .". e__b ¢"'="b &c. and e=f

‘ 2. L (14 4E)
2" X VB

or, from what has preceded,

4
1 o0

———

2m

(2=

| (z=1),

w
LY _—
2

?

- Io——— =

= —

In particular cases,
T e g3 4
T = b=y

o, [, -vib—&c.

= (more nearly) o—*./ 5 (rhore nearly )

vb

® Or thus, when e=+/% . ¢'v will be a very small fraction, for 10 zeros will precede the

first significant figure,
(14-e) (14e%) (14ev) e {14e) -;i = 22—5. 1. (1_1_-_:%1_)-_%_‘:_11_),
or (14e') (14e%) (14e¥H) s (145) . -2- = 2.1 —,;45

4

or very nearly — 24, L — T
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It has been shown, (page 239), that ‘/(A“LB,’; )ﬂca — (F) may

be transformed into a form such as

aw (A4 B u'?) du'
’ P 7Y\ .
m.u+ﬂjU f 0 (1—e* 4 (F)9

and, similarly, F/ into a form as m’ «"~+n ‘[-—ﬁu,— + . F”.

1 +ell ' dull
2 * Ulf 2

and obtain a resulting equation, such as

BF+4 ¥ F' 4 0F"4-pu'+ qu'’==0; which expresses the relatlon

between the integrals of three expressions similar to a’x/ ( = xz).

. du
we can exterminate [,

: . du
Consequently, since [ T =

If =1, then o/, u”, u"”, &c.=o0; consequently, BF(1)429F'(1)
444 . F”(1)=o0, since, x passing from o to 1, ' passes from o to
its maximum (1), and from 1 to o; consequently, between the
values of x, 0, and 1, fdF'=2F"'(1), F’(1) representing what the
integral ¥’ becomes when u'=1; similarly, fd 'F"\, when =1,

;QF"( 1).

Since similar equations must be true for ¥/, ¥, ', for ¥, F'",
Frv, &c. as for F, I/, F”, it is plain that, by a simple process of
elimination, we may arrive at an equation.of the form SF -+ p F¢—)
+vF(”)+7ru’+§zu”+ &C.-:o, ‘B, 7, v, g, &C. being constant quantities,
F=9, F(, the two last terms of the series ¥/, ¥, F'”, &c.

It is clear also, that we can obtain an equation as BF 4 o F/-}-
SF"4eFJ-&e. ... ,,«,F(”?‘)-}-VF(”)+nu’+éu"+au"’+&c. e ==0.
(A4-Ba?) . dx

Y (1—€* %) (1mmix?)
or area of a curve, the foregoing results, differently expressed, will
announce properties subsisting between the arcs and areas of

similar curves; - for instance, when A==1, B=¢’, the integral
(l—e" x*) dx
V(1—#?) (1—e* ¥

represents the arc

If, in particular applicationsJ

7 expresses the arc of an ellipse, abscmsa &, semi-
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axes 1 and ¢/ (1—¢%); consequently, the arc of one ellipse may

be represented by the arcs of other ellipses whose excentncmes

vary according to a given law; thus

1—¢ dv (1—¢) (14¢") du’ ,
o or 4 '( : = :-— (1+e')u-—f+ ol

/2

: 1—e'  fd  e? "\ .1
and 2 o — 4 (1+e ) u f+ x+e"’ *
Consequently,

s +'}

ore u'— (14¢)f+ -2—"’%_‘-_6—,)f’ :Tf_i_e,, 2f'—— 1(_1_:_1 7 U'=03
which equation, calling »' sin. 26, u" sin. 48”, agrees with the
equation
2. (14¢) E'= %E' "l'_ic (E+c sin. ¢) +2¢ . sin. ¢,
given by LEGENDRE, Mém. de I’ Academie, 1786, page 657

Ifx =1, w'=o0, and #"=0; consequently,

z(1+e)f(1) 3;:;, of (1) + LT 4 () =0 (b)

Putting @ = ( —> We have (see page 246) df = dv ( : _t :z) o
145% 0> , \ , , \ b o2 dz"
=d{ /( L ) }._._ (140) dz + = (1+ b)_,-,_m,__z,_.,
. g 1 L) , (L de'
orf=v,/| 55| =5 () 2+ 5 St

i S \/(ﬁ-‘.%i)-
Similarly, }f —z/(x+bz z)__(1+“b)z”+ (1+“b) Z,,

l+zl7-
!+ \b1 2
1+ I+ ° f— 4% ° \/( !+z”’)'
Hence, exterminating —- z," , there results an equation between £, 'f;' f,

and certain functlons of v.

o= -;/—.b-, 2= 7—‘?7’ 2 = :}-b-, substitute these quantities, and
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forf, f, ', put LU = L (1= (04 ;"“b, and there results an

2

equation between £ (1), (1), "f(1), the same as the one given in
the preceding page.

LANDEN, Mem. page 85, and LEGENDRE, Mém. de Z’Acad 17865
p.678, have deduced an equation subsisting between the circum-
ference of a circle and the peripheries of two ellipses,' whose

excentricities are 1/ and i ‘:/2 ;* but the application of the -
14+

preceding forms will enable us to express, immediately, the rela-

‘tion between the peripheries of a circle and of two ellipses, the
excentricity of one ellipse being assumed of any magmtude,
thus, by equation (), page 242.

f;f = ,i e{ =/ + L5 e } consequently, since
dx . 1+e' £ du’ o
V(l—x’) ( 2) — 2 . U/ b When a; 1,

dx 2 (1) 14 .
V=) (i) —1—¢  1—¢ JS(1);

but'./v\/(l—v; 1—¢® x%) (x:1)=P-—:', (page 250)

2 T i T 1=
or, (1—e) P.r—4 ' (1)+2.(14+€) f(1)=o0;
or; since —2— =quadrant of circle (q) radius =1,
(1—¢') P.g—of" (1) +(1+4¢') f(1)=0.
And f, f', may represent arcs of ellipses described on the same

semiaxis, major (1), with excentricities equal to e, e’ being
— 1-1/(1—2 )
FERVE oL

* The semiaxes of the two ellipses compared by LanpEw, are 4/2, 1, and -5:

1 . : : 2
+'11_) -_""':i(‘l

Vo2
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It is plain that, by a similar method we may deduce an equatxon

between f (1), f'(1), and = (,,%
LEGENDRE puts ¢"= + = _; therefore f answers to E” in his equation.

From what has preceded it appears, that the forms
P(1—eQ)

f=—(1+e')u'+ e (1+e)(1+e)u//+&c Al = V S
41w

Ay g u;)
__{__ (1—}-‘1))2-‘— be(:.{-b) (14%0) 2?”-[—&0 }

JRIRERS: N} <:+¢(1+z ) |
=) S &ec.

_—. ea ul . ell (]-—8”) . u + g__I_eﬂ . fl__‘
T3 Tz () Gy Tz () (e 2. (14¢) (14€)*

are parts of the same method of computation, differently ex-
pressed. It also appears, how certain analytical artifices of com-
putation, translated into geometrical language, become curious

properties of curves.

FacnaNr’s theorem, as it is called, may be deduced from the

form for the transformation of f; thus, taking the simplest case,
cgf:-i:(l-i-e').du’-—(‘_?- ‘3‘,’ +,i|_'ef'“3(7’
when #’ is at its inaximum, (1) x= m
S )= i £
(w'=1), ‘
i =y = -l-:'.e 150

Consequently, of —f(1) =— (1+e ).....(1--b’) l’”’

= (1—0*) —5 = 1—0b;

1+b -
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or ef=f(1)+41~b, orf--{f(:)—f}—-1—-b

or f— f) (1) _!_-_—z__b__
"This, expressed with reference to an ellxpse, announces that the

difference between an arc of an ellipse (abscissa = m) and

half the quadrant of an ellipse, equals half the difference of the

semiaxes.

Similarly, the difference between fand Ji%l may be asssigned, when

= jdx J 1 ) u"=1, and, consequently, when u'= 'ﬁx‘ﬁ?’"

x J =z thus, supposing the value'of x to be @, -

I e?. 7. ’

1 + 3
when #//=1 since,

€ ry. € : " 1—e¢  I4e" 1—e" du”

’df"'— 14¢ - du + (14€) (1+4¢") du —{ 2" 2 + 2.(14¢) J U
df" N

+ e (x+e)(l+e”)’

{ (I—e) (l+e")

f(:v_-a) - x+e’ 1/(1+b) + (I+e) (14¢")

'

1—¢" +

2. (14¢) U" (1-e') (14€") ’

df (1) — [ U=l 4 (=) 4" (1)
andf@)—""{ + z-(te) " }4JU" T (+e) (1 te)?

e

waf (p=a) =f(1) =7 - voy H wrare
Now, 1-4b'= S,!—%?" e'= E—%, and e'= :—ﬁ-,;
consequently,

4f—f(1)=2(1—vb) v (1+b) + (1—v'b)’,
Ol'f'—"— (1)__ (1—- b) 1/( +.0) + ( x—\/b) .

oo , 2 f—x?® 1.
Now, to determine x, we have »'== J ):; ol (T:e—?) ’

consequently, putting / ( s ).—:.—m,
e LA E=V GO D) oy putting for m, ¢', their values

MDCCCIV. : L1



256 Mr. WoODHOUSE on the Integration

rr= 1-:4/11{ 1— vfl-l—b) }.
which conclusion agrees with LEGENDRE’S, obtained by a different
process. See Mem. de I’ Academie, 1786 p. 665,
The foregoing method may be continued at pleasure; thus, if

v " I+8’”) o 1 J‘ '_ Vb .

putting this value = m'”, * must be determined from the equation

T4+m'® d—y/ (1—m'?) (1—m'* &%) |
— P
be conducted, if ™, or u¥, or u¥'=1.

These results, applied to an ellipse, cause it to appear, that right
lines can be assigned, respectively equal to the difference between
an arc and half the quadrant, between an arc and one-fourth of
the quadrant, between an arc and one-eighth of the quadrant, &c.

Here may again be remarked, the connexion between the arti-
fices of computation and the properties of curves; for the series

XP=

; and, similarly must the process

expressing fdz .,/ (1—"1—‘5_2-_—2:—) (ceteris paribus) converges more
quickly, the less x is; consequently, the whole integral is more

commodiously calculated by the theorem f(1)=of (x—-— (‘ s, )

—1- b, than 1f £ were put =1, in the form of the expansion of

dz J 1-¢2) - still more commodiously, by the theorem

Sf(1) -=4./(x=a)—2(1-1/b) v (140) — (1—v/b],

where a*= - b)} is less than ——— and so on.

T
ol = Yo VI

It has been already observed, that the methods of determining
£, by £, and £, or by f, f*, f', or by f”, f'"", &c. as LEGENDRE
has done, or by the regular form which the indefinite reduction of
J> into U=, ), assumes, are, au fond, the same methods; and I
purpose now to show that the substitution, which is to be considered
as the base and principle of the method, is the same, although dif-
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ferently expressed, in the methods of LEGcENDRE, of Mr. Ivory,
and of Mr. WaLLAcE, who have learnedly and ingeniously written
on this subject.

In order to deduce the relation between three ellipses, LEGENDRE,
Mem. de I’ Academze, 1786, p. 650, assumes

¢, sin. @', cos. ¢’

(1—=0b") sin. p =

vV (1=c?sin. @) °
Now, according to this author’s notation, ¢’ (f‘ o and 1 —b=
2, s 2 sin. ¢'. cos. ¢’
vt consequently, sin. ¢ = e Vs e, ‘P),whxch is precisely

the same substitution as u'— - +e' z J (I*x: > )

In the Edinb. Trans. Vol. IV. p. 183, sin. ($—op) is assumed

== c.sin. ¢; but sin. (—¢)==sin. J . cos. ¢ — cos. ¢} . sin. ¢,
. @ ?\*

) Sin qu - i qu N (2 . sm. -;-.COS.-—Z—-)

v C YT 14’ —2c.€08. 9

-

1 +c"-;zc (2 (cos. -%-)z-—-l)
consequently, puttting -—(-‘;*-1—6)7 =,

2 . sin. -% . cos.-‘p—

sin. § = 2 , the same substitution as

2 24
(x+c)1/(1—e.(cos.—2- )

P2 J 1—2* )
U= 14¢ - X (!;-ezxz °

Again, in Edinb. Trans. Vol. V. p. g%2, sin. 2¢’ is made

I

sin. 29 —_  consequentl’ 2 .sin. ¢ .cos. ¢ .
W (1e? 4z .cos. @) T 7 q Y Vi1te*fze (1—zsin. )
2 sin. ¢ . €os. @ a4 T .
T T ) (f{ =57 ), the same substitution as #'==

2 1—22
m'xN/ ( l-e“.iz)'

It appears, then, that the preceding substitutions, although, by the
aid of geometrical language, differently expressed, are all reducible

1—2z” .
to the algebraical substitution of u'= ’TéxJ (m), in the
Lle |
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2 2 . .
form dx/ (3'—'-15_—_%), which substitution I conceive to be more

obvious, more easily suggested, and more analogous to ordinary
sin. 29
V{1+e€*+2¢. cos @)

algebraical substitutions, than the substitution of

for the sin. 2¢, or, of Mﬂ)—

of thls substitution of u’ for x/ (g b ), and of the transfor-

mation of dz J e+f d ) into Adu'-4-dz’ \/ ( :f:{;f;), &c. M. La-

for sin. 4.

GRANGE]S, I beheve, the original author. :
When z is called the sine of an arc 6, dx J ( 1—e” & ) may be

xﬁ.

expressed by df/(1—e" sin.*d), 1/(1_..@1) s x,),by T 75
LAGRANGE, Fonct. Analyt. p. go, has treated of the integrals of
these expressions ; as has LEGENDRE, Mem. de I’ Acad. p. 663, and
Lacroix, Traité du Calcul diff. Vol. I1. page 454,

The results obtained by these authors, may easily be deduced

from the substitution of .r\/ -:f————):—_ v J (I—_—_%,—y—) Some of

1
these results may appear curious; but I apprehend, what is chiefly

necessary for the solutions of problems in physics and: astronomy,

dx 1—e* 2
into which the expressmns T G=r =y dzx J —1:"5?)

enter, is a method of approximating to their mtegra]s.

A certain method of approximating to these integrals, has been
given in the preceding pages. In different applications, its expres-
sion may be varied; thus, f is transformed into an expression
involving f’, f”, where f*, f”, can be more easily computed than
f; express this transformation with reference to an ellipse, and
it appears that the length of one ellipse may be estimated, from

the lengths of two ellipses of different excentricity. Again,

d . . :
" (“'; —FT=F 7, 1 order to be computed, is transformed into
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¥4 Ldu e o (14€) (14¢") du’
- S V(=) (1—e* u*) or nto z Vz-l-—u”") (1—e" u:/z)’

' mdzx _ ; .
&c. but =7 (7 a constant quantity) expresses the

time of vibration of a pendulum in a circular arc; consequently,
the time of vibration of oné pendulum may be estimated from the
time of vibration of another pendulum, vibrating in a different
arc; and, generally, corresponding to relations established be-
tween abstract quantities f, f’, f”, &c. will be found properties
subsisting between those subjects, of which, in particular appli-
cations, f; f/, f, &c. become the exponents and expressions.

A certain method for computmg the integral of dx J 1—¢? xz )

(df) being obtained, in a systematic treatise, the next busmess of
the analyst would be, to show what differential forms depended for
their integration on that of df. Such differential forms are many ;
and, by the introduction of geometrical language, with consi-
derable embarrassment to the computist, varied in their expression.

dxr dzx :
— , ' , di . 14 m.cos. 0),
V(l__x’&) (I~-e"x7')§f' 1/(1 7-) (l_ez 1)2_71_1*_—1 V( + )
cos. n.dé.y/ (14m . cos. 6), dx/(

may be reduced to depend for thelr mtegratlon, on

\/(ilf-x’)(z-e‘ = andfd.rJ (—'—Tl-e:_—“;—) (e, xless than 1). Amongst

these, dx J ( i j,'_': ) merits some attention. In an analytical

e* xt

) (e, x greater than 1)

point of view, there is nothing curious or remarkable in the reduc-

tion of such a form to dx \/ (I—e ) and other quantities that

e:r-—z)

can be integrated; but, with certain conditions, fdx J ,(-—-

2—1

‘represents the arc of an hyperbola ; consequently, announcing the
analytical result in geometrical language, the hyperbola may be
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rectified by means of an ellipse; which property is to be reckoned
curious, I conceive, because the ellipse and hyperbola are sections
of the same solid cone; for, otherwise, I do not perceive why it
is more curious, that an hyperbola should be rectified by means of
an ellipse, than that any other curve, whose arc = F, (F an in-

tegral dependent on fdx J ( - ';e_:z ) ) should be rectified by means

of an ellipse.
In order to integrate dx J ( ) bymeans of /dy J S y

P4 /
. ]'__.___7.'.‘ '
plltx=J< - :), then, when ¥ =0 x==1, and when z=1

r= oo, and de ( A ) (1—m’) d= , { putting m =

(1—-2%)% /(1—m* 2)

=} consequently, fdx J ( cro ) (¢ >1 } between the values of
£ (1—m?) dz

Z==0 and r= o0 = integral o : - between the
(l—z’)z V{(1—m? 2?) :

values of x—=o0 and ¥=1.

Now, d{ J(I"m = } dz/('—f"_ﬁz)—-(Lﬂrf)zf)z(,_m;zz)"‘.

(1—m?) dz

(l-—-z")z (1—m* 2%

Hene, f11=2 ¢ =z [/ (5] — i L)+

)% \/(1 m* 2?)

(1—m’ )J/ 1_;15 G )
but, if we putfdzJ (’_’l"_: ) =F, fd&J (‘—:":z:)____\F,

1—y/(1—="m?) oz J 1—'2? )
1n=_1+v(l_\mz)’ z—__ T——m % 1—'m®zg* :

Then, by equation (a) page 240,

dz 2ms . 2'F + 2F
‘ﬁl—z’) (1—m* 41) —m*  1—m 1—m*
e x*—1 ) __rp=m*)dz

consequently, /dz,/ ( (#*=1 (1=} ¢/ (1=m* ")
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=2/ [ 4 amz — o (14m) F4F, (c)
which,in fact, is LANDEN S theorem' for fde ( ——-—-———Il—-) represents

the arc of an hyperbola, semiaxes 1 and /(¢e—1), dnd F, F,
the arcs of two ellipses.
In an analytical point of view, the latter part of this solution is

unnecessary; for the problem is completely resolved, when it is
proved that

d
(1—m*) J z g
If the dlfﬁrentlal of x J -‘—:“3-—--) be taken, it appears that

d —c? 2 2 oy )
ud fde ) z.xJ(m’ od )
V{1—=2a%) (1—é* 27 1—e¢ 1—¢* 2

“and hence may be deduced a dlﬁ‘irentlal equatxon of the second

order, similar to the one given in page 236. TFor, since i/

dzr

./ (1-‘-';-3—:_-1:‘) making ¢ only to vary, or taking the partial differen-
tials, djz.{}e = ;&ixz)(l_ez‘xz), and .-, 3—-’; Zx dzd’; 1/(11—.2"2) T
and \vj.(r‘l-—‘xf‘) (1—e* 27) =/ - ¢

Similarly, \‘/((i’ixz) e = f - 6’~§-{ —e . difi,

f & '/(xm-x’ )__ ’ o . &f
or o PRy mf—e'de A o

e f f e* /(1-——x
or—l—_-j;—u+e.de+ . X . 3

~
when x == 1,
e* e a? f(1)

Tt 'f( L) e = -+ mi == 0.
I now purpose to show that the integration of forms such as
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Vif —;(1—e¢* 2*)™5", depends on that of fo ST
and of dxj (-3—’—;5;::-:-)
Let 20 =di ., 1—e' =Rt v 2= 2 1 —opr=T2d2RY
Vi—s? &*
consequently,
d{zy/ (1—z") R*"= }=

dy { STV Ram=t (9 —1) dg Rem—sf SR E4
=om.(232). Re=tddt = (o) | Ram—s gt 2EE Rembig,

ande””‘“’dG-—-2 7TV (1—27). R*’”‘f’—-%(e’-—a) JR".dE
— 3 (1—e) R 5 (4)
and, if (em+-1) be negative, either by substitution, or by taking
the differential of x‘l/{(,',,_, 2., we have
db 2m—2  2—e® db 2m—3 1 db

Remgr = . % ¢ R T . P 2
2]’ Iemg? 2m=—~1" 1—¢ R 4

1 e zy/(1—2%)
= Zm—1 ' 1—e* " Rzm—1 "

Hence, it is clear that fd§ . R* 2™+ depends on [df . RE(2m—1]
and fd§ . R* (m=3); similarly, fd6 . R* (2= depends on
Jdg REEm=3), fdy REEm=5): e, consequently, fdf . RE(E7+D)

depends on fdf.R and -f-dRE-.
Examples;
1. Let 2m+1=3 . 2m=2,
do V(=2 '
== SRl — o s (¢)

2 —_— 2
= :-ezf-— xe—a‘ x~/ (‘l:q’x")'
db 1 )
when x=1,f—l-{-,—=—;;;- J(1).
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2. Let em41=5 .". em=4,

) 42— o 1 . e V(1 —2)
RS 3 ' 1=e* JRY T 3(1=e?) J R 3 (1= R3
a2 z—e” : 1 . db 2 2—e® & 2/ (1—27)
T3 (1—e?)? f_ 3.(1—¢*) J R~ 3 (=) ° R
e* cay (1=—27)
T3 (1—e?) " R3 ?
if x =1,
db 2_--ez d ;
RS T3 Gy J(1) — (I-—e’) R o))

This is as commodmus a form as any for computation, but it may

easily be changed' into others; thus, since /—%9— =f—e %,

ML :
jRS 3 (1 ) f(l) + 3. (l-—e’) de (lntegral taken from
r=otor=1);

e . dx 1+e du’'
or, Slnce/R == \/(l___x—:.) (1—e* .Z‘") : V(1—=u") (1—e¢* u™=)
’”: (_'2 —f (1) I_e,, by equation (a), page 240.
. v §436% = 1}¢ 2. (1+e)
: Jl{.S T 3. (=) ( )f( ) 3 (1...3’)3 fl(l)’
5+3¢” S e

Or ==

2 1
3. (im¢)® ' 1—e* 3 ' (1—e) (1—¢) f(l)’
the integral being taken from z=o to r=1.

The integration of the form W———;)— (1—ex ) , depends

1—e .r’
also on the mtegratlon of R 1/(1 ) ,and of de ( x" :

for, substituting as before, and taking the differential of

=t/ (1—a*) . R+ (X)), we have

IX=— (2m+2n) gz_z_,(zm-l-l) =2 Remft  d8 -——(27‘i+2m+1) 7, Ram+41 dg

+ (em41) =5 272 R Y.

Hence, fz" .R*™+1 dj=— (Z"tiﬁ:m_;ff;n: ”,.fac””"?Rzm+I . d&)
(g

MDCCCIV. Mm
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+ 2m-+1 1—e* =2 Ram—1J0__

2ntzm+1 ° €t 2n+zm+1
And, since a similar form is true for fz**=*.R*"*! dj, and
Jx* =2 [ R*™~'df, by continuing the process,we must at lengtharrive
at forms such as fz°. R¥*'dj, f2°. R*~" df, which have already
been shown tobe integrable by /Rd6,and j—%o—; or at forms such as
2% Rdf, 2% . 4=, which are integrable by /Rdd, [-2~; for, by
preceding form,
J1%" Rdf= Afz**~* Rdf + Bfz*—* =
Similarly,
[a7=2 Rdj= A’ fx**=4 R84 B/fs*"~4-T — »27=3 ¥ T—» R,
&e.

— 221y 1—a* R.

x27 . db x20~=2, (1—R?) do . 220—2 o - p20—2

and T SO o ST G 2 Ry
2202 . db x2o=4 . db x2o—4
e. R T ¢ . R et .Rd@,
&c. &ec.
so that, finally, the integrals of 27 . Rd¢. , ff , must be reduced

to JRdé, and [Z-.
Hence, the integral of a form such as
nzm41
{A+Bx”+Cx‘+ &e. } (e x; .dr, depends on fRdf.and
If 2m-+1 be negative, or the 1ntegra1 of = Rm +, be required, then,

substituting in the preceding form, or, by a direct process, taking

a1/ I—x)

Tt (X) there will result,
LA
{e®=1) (2n—1)}2m—2 22—, db (zn—zm{ 1) 2%
(2m—1) (1—e*) . ¢* f Rem—t + (2m— 1) (T—e?) . c* ./ Ren—s ™
——X_,_._ -
(zm—1) (1—e}°

the differential of
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and, consequently, fﬂ%ﬁr—? finally depends on the integrals of
Rd0, and of -%9-.

The expressions hitherto given, are analytical. By the intro-
duction of geometrical language, there arise forms such as

diy/ (1—e. sin. *0), db,/ (1—e cos. *f), d9¢{1+ — (cos 6) }
diy (14m . cos. 0), db+/ (m.cos. b641),

(cos. 8)" d(){ 1-m cos. 9}%° the integration of which depends
onthatofde 1= ) and of 1/(1 — T

be shewn. I shall, however, omit the proof, and only observe, that
this variety of expression, by rendering obscure, or remote, the
origin of differential expressions, is rather an inconvenience than a
benefit to science.

Before I quit this subject, I wish to shew how, from the pre-
ceding integrals and methods, the coefficients in the series A-}-B.

2m+1

7> as might easily

cos. §4C. cos. 204 &c. the: expansion of (a*4-b*~—z2ab . cos. 9)
may be determined and computed.

{a,’+b’—-.2ab.cos. 9}—T= 2'"'“{ + co 9}
=(if-g-' =¢') azm“{ 14¢*—2¢'. cos. }“‘?' =A+B. cos. 6 +C.
cos. 284-&c.; consequently, a*" (1+e”.—-2e'.cos.0)2~’ﬁa'|2 df =
A0+ B sin. 04 C.sin20 4 &c. Letf=n=

A7;=a2’”+’f(1+e’“--2e Cos. 0)—“‘ df (when § is put = 7).

0
Now, - 1-4-¢"”—2¢'. cos. =1-}e"— 2e{2 (cos —) —1 }

gm-]-x

2 9 —
.....(1+e’) {1-—.- (l+e)‘ (cos. ) } let (I+e)z=e,cos.—;.._x

<. 14-e"— 2¢’, cos. 9—‘-(1+e) {1,....432 }

Mms
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and .-, Aw#a”m+‘ . (1+e/ ML, f(1—e x2) ;(f_x,)
="t (14-¢)2"F, [R*™+144, which, by what has preceded,

can always be determined by means of /Rd6, f —-‘g—-: To determine B,

a? 1 (14e’ )P+ R#HT cos.f= A . cos. § + B. (cos. 0)+
&c.

..‘a2m+1 . (1+el)zm+§ﬁ'/Rzm+x .CQS.G.d@:A.sin,9+BSin' 19+

making 0=, sin, 0, sin. 2), &c. =o0;

consequently, (a. (14e))?m+1, fR?™+1 cos.g.db. =BZ;
which integral can always be expressed by finite algebraic forms,
and the integrals of Rd 9,~—‘i—f—-; for, putting x==cos. %,

cos. b==ga*—1, we have R*+! ., cos. §. df =(2a’—1).R*"+* i
=gar. R*"+1  dy — R*™+1 gy, .

and, generally, to determine the coefficient (N') belonging to cos, S,
{a.(1+e’)’}2m+ ' R*™+ cos, n=A cos. nb4 B cos. nb . cos. §-}&c.

+ N { cos. 78 }2-{- N'. cos. nb . cos. (n41) 6 4+ &c.

multiply each side by d9, and integrate, making 9==; then, since

Jcos.md. cos. (m==p)bdb=/% cos. (em==p)bdh +f§- €os. pdh
(zmp) O | o sin. ph

I
= 3sin. ——= +3—;

1 (z2mtp)w sin. pvr .
=1 .sin. e “4 L = o, and, since

JN .(cos. n0)*dé=2% fNdy.(cos. 9n9+1)-- . N sin. 2n9+-—-—
=N-= ={a. (14¢ )}"”f‘" . JR¥™+1 dj, cos. n9, and the integral
of R#+1 cos. 79 . db can always be determined in terms consisting

. . . do
of finite algebraic quantities, and of the integrals /Rdl, [—-; for,
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. o 0
if x be cosine of —, cos.nf=

2 (2ar—1)y—n. (222 =1)"" 2225 (o)t e, }

1.2

Example. Suppose em + 1 = — g,
A= — ‘[;93 : Now, by form (e), page 262, f being

wad. (14
. ; 1—e® 2* 2f(1)
integral of a’.rJ (-—-—1-:;;), R3 = (a==1);
2 fl) 1 zf(1)
w(@® (14€)3) " 1—e* T4l (146) (1—¢)*" =
—_F)
T (a+4b) (a=b)*. %
and, to compute this quantity, the series (6)* page 244, or the

consequently, A =

series (9), page 249, may be used; that is, if £ be AVLL it s

most commodious to employ series (6), if ~ _\,/ 1, it is most com~
modious to employ series (9).

To determine B,

Br __ 1 ‘ fcos.'ﬁ.d@ but cos, 8 .df ___ (22%=~1) 2dx
z T @ (143 R3 2 R3 7 y/(1=a?) « R¥?

@ being the cosine of %

Now, by form (g) page 263,

2> dz dx
V(I z) R; f( ) 1/(1'— z)( e’x’)’

dx ____f(l)

and  AM(1—2*) . R3T 12 ¢

hence,

cos. B0 2-e) 4
f R T f(l) L(l-—x‘) (1—e*2%)°

<x+e'*)<:+e>2 f(l) e [ dx

e (1— e’ V(1—2*) (1—e* x")
Hence, calling f ‘/(I—wi) (;_ =5 (from x==0 to ==1) F(1),
. I SO i o : zf(x) 1 ‘
We have B T ab. (a==b? (a4b) ° @& = T2 NrEY 2F(1 )3
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if e'= l’» be 2 4/2—1, compute f(1) from series (6), and F(1)
from the series (14-¢') (14-¢") (1+e”’) (1) . —’25 (-E;"—),

to which it is equal,
1fe—<——- be A 1/2--1, compute f(1) from serxes (9), and F(1)

oy el
from the series (14'0) (14"0) (14"0) ... 1+B) e
( P )b) to which it is equal.
For the purposes of computation, the foregoing expression for
B is, I believe, as simple as any that can be proposed. It is easy,
however, by means of the preceding forms; to express it differently ;

; dx
thus, ‘/;/ Pty eﬁﬁ (fromvv.,,:o to z=1)

= =3 f(1)+ - o (1)

cos. 0. db
Consequently, f""""'ﬁ?"
o WD) f) g LR F()— ST of (1)
=4 ‘{f‘;’;-fm e -2f’<1>
rcos.b.d0 24 2f) 2 ” 1.
"B:‘—’i“'(;er)z'f Ri b (atb](@=bF " w ”b(u’f—-,b‘)fgf(l)

. A
or == zab "% .2 (@=b7 " 2f’(1).
Let em41 = —1; '

; 1 [‘zdx
then, A'ﬂ'———- 1+e J 1/(1_3;-'3-) Leme?® 2%). (

(2a*=1) . 2dx

and ——xa(1+e )"“‘[\/(:_x NrE—ro) |
1—e® 2% ° dx
4/41 2 (1=-e® 27) _7\[dx~/( 1—2* )-’2 V(l %) (1—e* 2}
b= 4 f= — L p),
oy — 4 = EE L F () = )

a"-l-bz ZF(I) a+b zfl).
Consequently, B=—— . ——=—5 >

r=1)= }lﬁ oF(1),
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‘since F(1) = (14-¢') (1+¢") ... ==P. 12’_,

A--——— P (if 2 be put ==1)= —— =(1}¢") (14-¢") &c
pin B = S 20 12t 0
but f(1) ==. (1—eQ) P,
~B=rme (&'—‘l) |
e SRR sy
or =(1-¢") (14e”) (o) &e.f o TE 4 S 4 &)

which agrees with the result given by Mr. IVORY, Edinburgh
Transactions, Vol. IV. p. 187.
If, instead of the serics used for F(1) f(1), we employ the

serles-——— hyp Jog. (m)b -,
1—.-b.{—12’-.":b+ b, (“”’)"”’ + &ec. }—]— 5. Pthp Iog(m)b

2.2 . 2.
we shall obtain expressions for A and B, which, in certain values
of b, are more commodious for c“ompﬂ’cation than the preceding
expressions. '
In like manner, if em+1—=—35,

‘ 8. (a®4b?) .2.F(1)
A= 3. (@*—b*)3 a—-b)vrf( ) 3.(@*—b*)*. (a4 b)’

__a  a*+14a* 2404 a [a*4b%)
B %" 3 (a*—b*)* {a+0) Wf(l) 3« b (a*—b*)* (a-b) F(I)'

SinceN = =, (a. (14¢'))*™*+* fR*™*, cos. nf.dp; by what
has preceded, N may always be determined by a direct process,
and indcpendently of the preceding terms. For the purposes of
computation, however, it is commodious to deduce N from the
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two preceding coefficients "N, 'N'; and the method of deduction
nearly the oldest, that of CLAIRAUT * seems to me the best.
Itis, in substance, nearly as follows

14-e” 23.005.9:1;}—e (1-—- "

==14-¢" (1~—c.c0s. §)==(14-¢") V?, putting c=

-7 . C08. §)

2¢’ :
;;;z,V’:::h-c.cos;O,

TIJV’"““.\ cos. (n—2) 8 .dj,

Hence, "N = = (14-¢")~
am-j-1

N L= (14e*) 7 [ V" * . cos. (n—1) 0. dy,

NIZ= (1+e'?)2-"5tfvm+‘ cos. n8 . db;
consequently, 1t is necessary to determine
SVzm+1, cos. nd . dy (F") from fVzm+1 . cos. (n—1)0d0. (F"),and
JVamt1 cos. (n—e)o.di. (F).
Now, L. cos.n8 4 L. cos. (n—2) == cos. (#—1)§ .cos.$,

£ dF'4 L dF = Vem+rdh. cos. (n—1) 8. cos. 0

= Vzm+1dy . cos. (n——l}e('—v )

dF’ cos. (n—1) db 2m+ 3,
c < 2V

but, df VEm+3 sin, (n—-—-l)e} (n—1) cos. (n—1) 9. V2m+3 dy

(2”"4;_3)c . COS. (n-—z)e veEmdr (2m+i) ¢ .cos.nd V3m+1 gy

s
-_—

__ F . sin {n-——l) A (zm4-3) F zm43
Hence’_; + ? - 7 B T(n—1)c. T4 (n—1) et — #ln—1) P
-. when sin. (n—1) §=o,
F— gn—=1) F'g(zm+3—2{n—1)) cF
s (znd4-2m+1) ¢ >
or,
N"“" (4n—4) ‘NI (zm-} 5—2n) "N
(zm4-2n41) ¢ )
Let n=—=2 - N=B, "N=2A, N=C,
o C = 4B+(zm+ 1) 2cA 4B {zm4-1) 2A
P = (zm+5)¢ (zm+5)c + z2m+t5

» Mem. de I’ Academic, 1754, page 550.
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Letn =g, then,

D— 8C + (2m—1) B

b

{zm+47)c zm+ 7
. __ 12D (zm—3) C
n=4, E= (2m+9) ¢ + 2m-+49
&c. -

Since, by the preceding forms, the coefficients A, B, can always
be expressed in finite algebraic terms, and in terms involving
JRdb, f , the problem that of expanding (1--¢"~z2e’.cos. 6)2”4'1

is resolved in its most extensive sense. A and B, however, can be

determined most easily, in certain values of the index zm;”; and
mathematicians have therefore given methods for deriving A’, B’

224 == 1) from A, B, (index 2“1}, A method as eligible

as any, depends on a problem similar to the preceding ; thus, we
may determine A’, B', from A, B, by deducing the integrals of
Vam—1dy, Vam—1 cos.§.dj, from thoseof
Vam+t1, dj, Vam+1 cos.0.dp; or, since

Ar = gzmi1, (14-¢")zm+1, Rem+r, d,

E}- = @*"™+1 | (1€ )*"F R cos, . i,

......azm+1 (14T oy
Ap = R .R do,

- (14-e)2mtt k 21
T R .Cos.0.db;

and, since cos, § =2x"—1 (== cos. —:-)

By substituting, in form (g ), page 263, for 27, 1, we have
P2 _ (am42) —(2m+1) [pam41 (2m41) (1—e)
fz* R dg= iR JR di+ Yot

JRem—1v dy (x=1)

(mdex

o (e —1) R¥™+ 1 dp

~ (zm41) =2 (2m 1) 2.2m41 1—e® LY
= Gt /R_2m+ld’9+ i T SR =1,

MDCCCIV. Nn
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Consequently,

CnED o B (amt 1) (0 —2) Ao, (om1) (1—€ ) (1€ YA
(am+3) 2ab F0) 2. (@48 A ‘ oA

or ——2 3%5—:—5)—;.13:——(2'" —Ggn A2 (em1) (a—b) A,

,__zm43 ab a*4b*
Or’A"_zm+1 '(az_b‘z)’LB_l_ (az bzz A'

2m+z '
e up

.. _ o _
Again, since (2.2:’——-1) R2"=1 Jf— 2=5_ R2M=1 ff

i
H —
(since r'= —; 20

1—R* ) e 4 b2 Rzm—1 de (4+b) Rzm+1 db,

B (a4by="EE (g by oAr — LA op;

zab T zab
and substituting for A/,
B= iﬁii @ +b’;)lB + (ajai)')%

The method of deducing the coefﬁments, by a direct process of
integration, from Rm+l do, cos. §.Rem+1 4y &c. differs, when
examined, scarcely at all from the method of d(.termmmg A and
B (index em+-1) from A’ and B’ (index (em-41)—2); for, in
the first method,

[REMA gy [RP— d9+af[R2m“3 dit-&c. +'af Rdb - [~5-
(x=1);
or, by continued reduction,
= B/Rdy+ v f—‘-i—g—-, (the Greek characters denoting constant
coefficients ;)

but, since [R*" " dj, jR’m"‘3 d4 &c., fRdS, f
multlphed into certain constant quantltles are respectlvely equal to
the coeflicients, A’, A", A", &c. ..... - “A, ‘A, the indices being

om—1, 2M—g, 2M=—7F, w.... 1, —1,

it is clear, that by determining fRzm+1di, from [ Ram—1dy, &c,
we, in other words, determine A by A’, A" ...... “A, ‘A, or, when
A, A" &, are reduced to depend on “A, ‘A, by “A,'A.
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By the method given.in the preceding pages, the coefficients

are made to depend on the integrals ( f, F)of dx J (

dx .
V=) 1= 27"
methods have been given for that purpose for all values of e, and
consequently for all values of a and b. If the coefficients are to
be determined by derwmg A, B, from A’, B, &c. the best method
to be followed, is that given by Mr. Ivory, who determines the

coefficients, when the index em 1= —1, in fact, by integrating

Temg® %
b4

1—x*

These 1ntegrals, it is necessary to compute; and

dx ds.
oV e C (dF), or Ta—e e Ob v&hxch A depends,

and dx J '_li’;: ) (df),or diy/(1—e.(sin. §)*,on which B partly
depends.*

The author last mentloned in his valuable Paper inserted in the
Edinb. Transactions, first, I believe, applied the method of trans-
forming f, F, into similar integrals f’, F’, f, F’, &c. to the
determination of the coeflicients A, B, &c.; but the method of trans-
formation belongs to LacrancE.} This great mathematician has

also solved the problefn of the expansion of (a*4-6* —-Aab.cos.e)ﬂ;‘: :

2m+

he determines A and B, when the index —— =1, in which case,

the series for A and B, W1th respect to 1ts numerical coefficients,
decreases the fastest. But the solution is not general, or, to speak

* B depends on f and F, for
cos. 0.db (22—1) 2dx _—4 (—e*x?)dr
, 612 V(I—2*) (1=e*2*) " & y(@1—1*) (1—e* 2%)
1/(1—6"-(C05--—2) -

' (2_.e") dz ——4. J x——ezz’v'). 2.(z—c*) dzx
t2 WV(—a2?) (1—=e* 2¥) dx ( 1—x* + e 4/ (1—2®)(1—g® 2*)"

+ T assert this on the authority of LACROIX, having never been able to procure the
volume of the Turin Memoirs in which Lacr ance’s method is contained.

Nn e
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more precisely, it would be extremely 1ncommod10us to compute

A and B from the series ascending by the powers of —-, if b were
nearly =—a.

The method of LAGRANGE, given in the Berlin Acts for 1481,
p'._252, has been followed by LarLACE, Mécanique céleste, p. 268
and, in that part which relates to the derivation of A, B, from A','
B, by Lacrorx, Calc. diff.-p. 120; and by Mr. WALLAcE, Edinb.
Transactions, Vol. V. p. 256. But the great difficulty of the pro~
blem does not consist in deriving the coefficients from one another,
but in computing the value of the first and second ; and, for this
end, a series that simply expresses the expansion of

(1—e.(cos.6)) = must be inadequate, at least, it cannot be com-
modious and general.

Crairaut has given a peculiar method for finding A, Mém.
de I’ Acad. 17 540 P- 540. ARBOGAST, Calcul des Derzvatzons, p. 359,

-, which
agrees with LACROIX s, Calc. mt p. 121; but the expansion is
inconvenient, for reasons already stated, for the purposes of arith-
metical computation.

If we join together certain parts of  LEGENDRE’s Memoir, we
shall obtain a complete solution of the problem of the expansion of

(a2 b*— 2ab (cos. 9) ; for he shows, that E, the integral of
dy. o/ (1—e (cos. 0)° may always be resolved into similar integrals
E, E”, or 'E, "E, or, by éontinuihg the resolution, into E”, E, or
“E, “E, &c. and, consequently, he shows how E. may, in all values
of e, be computed ; and moreover, he shows that the integral of

(cos. 6)". (1+oa Cos. 0) de may be always reduced to that of
(1+x,cos 0 d9 and therefore to the integral of
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dby/(1+ acos. 0) and e (1 oy 9) Now, the coefficient affecting
cos. nf=a; cos.n8.df.(1—c. cos. 9)""" \(a aconstant quantity,) and

cos. nf=% {(9 cos, 6)"—mni(2.cos. )4 = ""3 (zcos f)—*— &c. }

E, E, &c. LEGENDRE calls elhpsesg bemuse the differential of
the arc of an ellipse may be represented by an expressioh as
diy/ (1-—e*(cos 8) ) but the problem of the expansion of

(a* 4 b — 2abcos. requn'es only the integrals of 2 - d0.R;
the determination of which mtegrals,. is totally mdependent of

ellipses, as it is, of all other curves.

That the determination of the coefficients A, B, &c. depended
on the integral of R4, whlch, in a particular application, represents
the arc of a conic section, was known to D’ALemBERT. In the

Récherches sur différens Points importans du Sysiéme du Monde, page
M’

¢ be-

66, he proves that A, B, are respectively equal to —
ing the semicircumference of a circle, and M, M the mtegrals of
dz (a+b cos. z)T, and cos. z . dz. (a-b cos. z)+, when z = =3
which integrals depend, he says, on the rectification of the conic
sections; he then adds a remark, which requires some comment
‘and explanation. «Tout se reduit donc  trouver par approximation,
«la rectification d’un arc donné dans une section conique; et c’est
“ a quoi on peut parvenir aisément par différentes méthodes. Mais .
« je ne m’étendrai pas davantage la-dessus, parce que cette maniére
<« de trouver les inconnues A et A’, me paroit plus curieuse et plus
« géometrique que commode pour le calcul.” p. 67. D’ALEMBERT,
therefore, rejects a method which has since been adopted: the
reason, I presume to be this; if he had attempted to find the co-
efficients by the rectification of the conic sections, he must have

reduced the integrals of dz (a--b. cos. %)+, cos. zdz. (a4-b cos. 2)=
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to a series of terms, as Z'4-Z"+Z" &c. 4 [dz (a+-b. cos. z)i4-

fz—-—-——-—-—:ib 1 and, after this reduction, he must have found the
CO0Ss. 2

integral of dz (a--b cos. )%, which, as he then could only do by
resolving it into a series, was a problem not more easy, than the
finding of the integral of dz (a--b cos. z)+ from its immediate
resolution into a series; consequently, the reduction of
dz (a+b cos. ), into Z'+Z"" 4 &c. would have been useless and
unprofitable labour. Had a certain and easy method of computing
(a—]— b. cos. 2)i been known to D’ALEMBERT, he would not have
asserted the reduction of S(a+b.cos. 2)+ into Z'+4Z" + &,
JS(a+bcos.)idz, to be a method ¢ plus curieuse que commode.”
The mtegral of furmshes an easy instance for illustration,

Suppose it were necessary to compute it a value of & being given
less than 1; resolve it into

e ) d .
V(1—z)[ Az’ 4Bz +Cx } +/E. oo s

then, from such expression, may the integral be easily found,

since we have tables that exhibit the value of L/;/ i for all values

of x between oand 1; but, if the zeal and ability of former com-
putists had not enabled us, in all cases, to assign the value of

f‘—/‘z(-xl—-—-;)-, it would be, practically, more easy and COnvenient for a

Smgle instance, to compute an expression as f o= 1mmed1ate1y
from

4 . “‘"1‘,'_ . —1 ‘4 .3 —T 6
jxdx{l,——m 2.3-[—]3"1 folg 17 724 &ec. },

1

9 —

L
D1~ =.a” D1 T x°
or = — + — &e.

than from 1/ (1-—::: )IAw +Bw*+Cw} +Ef1/(1 pupert
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since, after this reduction, it would be necessary to compute
, 7 s )
E fromE{w-—m—%—'—ts—'-—{-D’l—%.——z—— — &c. }

1/ 1—x* . - . ¢ N
These observations are, however, digressive; the problem, the

expansion of (a*+ b'— - is, T conceive, completely re-
solved in the preceding pages, whatever be the ratio between the
radii of the planets” orbits.*

What I have advanced, on a former occasion, concerhing the
independence of analysis and geometry, is confirmed by the pre-

sent reasonings and results. fdw/ ('“" > } J.dz J (ez:i),

v‘if—m e have been computed, without the introduction

of an ellipse, an hyperbola, an oblique cylinder, or a pendulum

* In the case of the new planets. Ceres and Pallas, whose mean distances from the sun.
are nearly equal, the series (8), and the~expression
(x+‘b) (D) (T 4%D) ... (14 (D)
o
count of the rapid convergency of the quantities, ‘b; “b “b, &c.; and, in general, in
estimating the disturbing forces of 2 planets, since ¢ is
mean&glistancc of nearest planet
mean distance of the more remote planet’

A (m) 5 (F), will be very convenient, on ac-

and

3

1—¢ . eyt o
b= el putting b=¢', =y 2—1=. 4142, &c.

hence, if ¢’ be greater than .4142, &c. the series of terms ‘b, “b, b, &c. decrease more
rapidly than ¢’, ", &c. and, consequently, the series (8), page 248, and the series
. “

Gt G bim Q-+ (%) A ——(-f;z, are to be used in determining the perturbations,
when the planets are Mercury and Venus, e¢'=0.53516076

Venus and Earth, €0.72333230

Venus and Mars, €=05.47472320

Earth and Mars, ¢'=0.65630030

Jupiter and Saturn,  €'=o0.54531725

Saturn and Georgium, ¢'=0.49719638

Ceres and Pallas,
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‘e o e . N g dx . :
vibrating in a circular arc; and, as f—=—— might have been com-

puted, without the introduction of the Lemniscata.* 1 have stated
the mode by which analysis may derive aid from geometry; the
extent of the aid however is, I conceive, very small; remove the
circle, ellipse, and parabola, curves whose properties have been
the object of so much investigation, and we only create for our-
selves unnecessary and circuitous operations, by introducing curves
into the discussion of questions purely analytical. For the purposes
of classification, however, curves may not be altogether useless.
The correspondencé that has been shown, between the artifices
of calculation and the properties of geometrical figures, may be
thought, perhaps, curious or remarkable; and the reduction of
several methods into one is, I presume, practically and scientifically
useful. On similar reductions, the perfection of analysis, to a great
degree, depends : for, a frequent result of a careful investigation
is, the discovery that methods apparently different, because dif-
ferently expressed, are founded on the same principle and funda-
mental notion; but, if examination and study thus diminish the -
seeming bulk of our knowledge, they, at the same time, increase

its precision and purity.

® See EuLer’s Memoir, Novi Comm, Tom. VL. p. 37, &e. Likewise, relative to the
subject of this Paper, Novi Comm. Tom. XII.  Nova Acta, Tom. VIL 17%8.



